

Odoo 10 Development
Essentials

Daniel Reis

 BIRMINGHAM - MUMBAI

Odoo 10 Development Essentials
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2016

Production reference: 1241116

ISBN 978-1-78588-488-7

Credits

Author

Daniel Reis

Copy Editor

Tom Jacob

Reviewers

Ray Carnes
Olivier Dony

Project Coordinator

Shweta H Birwatkar

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editors

Prachi Bisht
Subho Gupta

Indexer

Pratik Shirodkar

Content Development Editor

Mehvash Fatima

Graphics

Kirk D'Penha

Technical Editors

Prashant Chaudhari
Bhagyashree Rai
Khushbu Sutar

Production Coordinator

Deepika Naik

Foreword
When I joined Odoo in 2009, my first task was to deliver training courses for consultants,
including technical sessions for new Odoo developers. Daniel's Odoo 10 Development
Essentials is the realization of my wishes from these sessions; the companion book I wish I
could have given to the participants, to kick-start their first contact with Odoo.

Chapter after chapter, he walks you through the creation of your first Odoo app, following
best practices at every step. Starting with a solid development environment, you'll soon feel
comfortable with your Odoo system, and quickly shape up your typical app. From the
model groundwork upwards, you'll learn about each layer, including the latest website
features and the integration mechanisms for third-party systems. Most importantly, your
journey will include quick references for most important API areas, and before you know it,
you will grasp the fundamental design properties of Odoo—minimalism, modularity,
extensibility, and scalability. Understanding this will be an invaluable asset for any task you
set out to accomplish, and is what sets apart good Odoo developers.

This updated edition is a great reference for more experienced developers as well, as it
focuses on Odoo 9 and 10, introducing a smarter framework, modern conventions and
tools, and the removal of the first Odoo API.

The book also includes a wealth of pro tips, acquired through years of experience, that
should make a seasoned Odoo developer out of you in no time, without the extra gray hair!

Last but not least, Daniel has a natural talent for this, so I promise you'll truly enjoy the
Odoo 10 Development Essentials ride!

Olivier Dony

About the Author
Daniel Reis has been an active contributor in the Odoo community and a speaker at Odoo
and other tech events. He is a member of the Board at the Odoo Community Association
(OCA) and partner and advisor at Odoo integrator ThinkOpen Solutions. Daniel has a
degree in Applied Mathematics, a Master in Business Administration, IT consultancy
background, and he currently works as applications manager at Securitas Portugal.

About the Reviewer
Olivier Dony is a Belgian Civil Engineer graduated from UCL in 2003. Specialized in
network engineering, databases, and information security, he has developed a passion for
open source software over the 10+ years he has spent in the IT industry.

A self-described caffeine-based lifeform, he has found an ideal environment at Odoo
Belgium since 2009, where he wears many hats: Community Manager, Security Officer,
Research and Development Engineer, to name a few. His first mission at Odoo was to
deliver training courses to consultants and developers, as he loves to learn new things every
day and to disseminate the knowledge.

Away from the keyboard, he is the proud dad of two adorable kids, an enthusiastic reader
of all genres, and he nurtures a passion for astrophysics, vintage space technology, and of
course, coffee!

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Table of Contents
Preface 1

Chapter 1: Getting Started with Odoo Development 7

Setting up a host for the Odoo server 7
Provision for a Debian host 8
Creating a user account for Odoo 9

Installing Odoo from the source 10
Initializing a new Odoo database 13

Managing your databases 14
A word about Odoo product versions 15
More server configuration options 16

Odoo server configuration files 16
Changing the listening port 17
The database filter option 17
Managing server log messages 18

Developing from your workstation 18
Using a Linux text editor 19
Installing and configuring Samba 19
Activating the developer tools 21

Installing third-party modules 23
Finding community modules 23
Configuring the addons path 24
Updating the apps list 25

Summary 26

Chapter 2: Building Your First Odoo Application 27

Essential concepts 28
Understanding applications and modules 28
Modifying and extending modules 28
Creating the module basic skeleton 29
A word about licenses 31
Adding to the addons path 32
Installing the new module 32
Upgrading a module 33
The server development mode 34

The model layer 35

[ii]

Creating the data model 35
Adding automated tests 38

The view layer 39
Adding menu items 39
Creating the form view 41
Business document form views 42
Adding action buttons 42
Using groups to organize forms 43
The complete form view 44
Adding list and search views 44

The business logic layer 45
Adding business logic 46
Adding tests 47

Setting up access security 47
Testing access security 47
Adding access control security 49
Row-level access rules 51

Better describing the module 52
Summary 53

Chapter 3: Inheritance – Extending Existing Applications 54

Adding sharing capabilities to the To-Do app 54
Extending models 56

Adding fields to a model 57
Modifying existing fields 58
Modifying model methods 59

Extending views 61
Extending the form view 63
Extending the tree and search views 64

More model inheritance mechanisms 65
Copying features with prototype inheritance 65
Embedding models using delegation inheritance 66
Adding the social network features 67

Modifying data 69
Modifying menu and action records 69
Modifying security record rules 70

Summary 72

Chapter 4: Module Data 73

Understanding external identifiers 73

[iii]

Finding external identifiers 76
Exporting and importing data 77

Exporting data 77
Importing data 79
Related records in CSV data files 80

Module data 82
Demonstration data 82

XML data files 83
The data noupdate attribute 84
Defining records in XML 85

Setting field values 85
Setting values using expressions 86
Setting values for relation fields 86

Shortcuts for frequently used models 87
Other actions in XML data files 88

Deleting records 88
Triggering functions and workflows 89

Summary 89

Chapter 5: Models – Structuring the Application Data 90

Organizing application features into modules 90
Introducing the todo_ui module 91

Creating models 92
Model attributes 93
Models and Python classes 94
Transient and Abstract models 95
Inspecting existing models 95

Creating fields 97
Basic field types 97
Common field attributes 99
Special field names 100

Relationships between models 102
Many-to-one relationships 103
Many-to-many relationships 103
One-to-many inverse relationships 105
Hierarchic relationships 106
Reference fields using dynamic relationships 107

Computed fields 108
Searching and writing on computed fields 109
Storing computed fields 110
Related fields 110

[iv]

Model Constraints 111
Summary 112

Chapter 6: Views - Designing the User Interface 113

Defining the user interface with XML files 113
Menu items 114
Window actions 116

Context and domain 117
Context data 117
Domain expressions 118

The form views 120
Dealing with several views of the same type 121
Business document views 121

The header 122
The sheet 125
Title and subtitle 125
Smart buttons area 126
Grouping content in a form 126
Tabbed notebooks 128

View semantic components 128
Fields 128

Labels for fields 129
Relational fields 129
Field widgets 130

Buttons 131
Smart buttons 131

Dynamic views 133
On change events 133
Dynamic attributes 134

List views 135
Search views 136
Calendar views 138
Graph and pivot views 139
Other view types 140
Summary 141

Chapter 7: ORM Application Logic – Supporting Business Processes 142

Creating a wizard 142
The wizard model 144
The wizard form 145
The wizard business logic 146
Logging 147

[v]

Raising exceptions 148
Helper actions in wizards 149

Working with the ORM API 150
Method decorators 150
Overriding the ORM default methods 151
Methods for RPC and web client calls 153
The shell command 154
The server environment 155
Modifying the execution environment 156
Transactions and low-level SQL 156

Working with recordsets 158
Querying models 158
Singletons 159
Writing on records 160
Working with time and dates 161
Operations on recordsets 162
Manipulating recordsets 163
Using relational fields 164
Working with relational fields 165

Summary 165

Chapter 8: Writing Tests and Debugging Your Code 166

Unit tests 166
Adding unit tests 167
Writing test cases 168
Setting up tests 169
Testing exceptions 170
Running tests 171
About YAML tests 171
Development tools 173

Server development options 173
Debugging 174

The Python debugger 174
A sample debugging session 175
Alternative Python debuggers 176
 Printing messages and logging 177

Inspecting running processes 178
Summary 179

Chapter 9: QWeb and Kanban Views 180

About kanban boards 180

[vi]

Kanban views 181
Designing kanban views 184

Priority, kanban state, and color 184
Kanban card elements 185
The kanban card layout 187
Adding a kanban card option menu 189
Actions in kanban views 190

The QWeb templating language 191
The QWeb JavaScript evaluation context 191
Using t-attf for attributes string substitution 193
Using t-att for dynamic attributes 194
Using t-foreach for loops 194
Using t-if for conditional rendering 196
Using t-esc and t-raw to render values 196
Using t-set to set values on variables 197
Using t-call to insert other templates 198
More ways to use t-attf 199

Inheritance on kanban views 200
Custom CSS and JavaScript assets 201
Summary 201

Chapter 10: Creating QWeb Reports 202

Installing wkhtmltopdf 202
Creating business reports 204
QWeb report templates 205
Presenting data in reports 206
Rendering images 208
Summary totals and running totals 209
Defining paper formats 210
Enabling language translation in reports 211
Reports based on custom SQL 212
Summary 214

Chapter 11: Creating Website Frontend Features 215

Roadmap 215
Our first web page 216

Hello World! 216
Hello World! with a Qweb template 217
Extending web features 218
HelloCMS! 221

[vii]

Building websites 222
Adding CSS and JavaScript assets 222
The to-do list controller 223
The to-do list template 224
The To-do Task detail page 226

Website forms 227
The form page 227
Access security and menu item 230
Adding custom logic 231

Summary 233

Chapter 12: External API – Integrating with Other Systems 234

Setting up a Python client 234
Calling the Odoo API using XML-RPC 235

Opening an XML-RPC connection 236
Reading data from the server 236
Calling other methods 238

Writing a Notes desktop application 239
Communication layer with Odoo 239
Creating the GUI 241

Introducing the ERPpeek client 243
The ERPpeek API 243
The ERPpeek CLI 245

Summary 246

Chapter 13: Deployment Checklist – Going Live 247

Available prebuilt packages 247
Installing dependencies 248

Preparing a dedicated system user 249
Installing from the source code 250
Setting up the configuration file 250

Multiprocessing workers 253
Setting up as a system service 253
Creating a systemd service 254
Creating an Upstart/sysvinit service 254
Checking the Odoo service from the command line 256

Using a reverse proxy 256
Setting up Nginx for reverse proxy 257
Enforcing HTTPS 259
Nginx optimizations 261

[viii]

Long polling 262
Server and module updates 262
Summary 264

Index 265

Preface
Odoo is a powerful open source platform for business applications. On top of it, a suite of
closely integrated applications was built, covering all business areas from CRM and sales to
stocks and accounting. Odoo has a dynamic and growing community around it, constantly
adding features, connectors, and additional business apps.

Odoo 10 Development Essentials provides a step-by-step guide to Odoo development,
allowing readers to quickly climb the learning curve and become productive in the Odoo
application platform.

The first two chapters aim to get the reader comfortable with Odoo, learn the basic
techniques to set up a development environment, and get familiar with the module
development approach and workflow.

Each of the following chapters explains in detail the key development topics needed for
Odoo addon module development, such as inheritance and extensions, data files, models,
views, business logic, and so on.

Finally, the last chapter explains what to consider when deploying your Odoo instance for
production use.

What this book covers
, Getting Started with Odoo Development, starts with the setup of a development

environment, installing Odoo from source, and learning how to manage Odoo server
instances.

, Building Your First Odoo Application, guides us through the creation of our first
Odoo module, covering all the different layers involved: models, views, and business logic.

, Inheritance – Extending Existing Applications, explains the available inheritance
mechanisms and how to use them to create extension modules that add or modify features
on other existing modules.

, Module Data, covers the most commonly used Odoo data file formats (XML and
CSV), the external identifier concept, and how to use data files in modules and data
import/export.

Preface

[2]

, Models – Structuring Application Data, discusses the Model layer in detail, with
the types of models and fields available, including relational and computed fields.

, Views – Designing the User Interface, covers the View layer, explaining in detail
the several types of views and all the elements that can be used to create dynamic and
intuitive user interfaces.

, ORM Application Logic – Supporting Business Processes, introduces programming
business logic on the server side, explores the ORM concepts and features, and also explains
how to use wizards for more sophisticated user interaction.

, Writing Tests and Debugging Code, discusses how to add automated tests to
addon modules, and techniques to debug module business logic.

, QWeb and Kanban Views, goes over the Odoo QWeb templates, using it to create
rich Kanban boards.

, Creating QWeb Reports, discusses using the QWeb based report engine, and
everything needed to generate printer-friendly PDF reports.

, Creating Website Frontend Features, introduces Odoo website development,
including web controller implementations and using QWeb templates to build frontend
web pages.

, External API – Integrating with Other Systems, explains how to use Odoo server
logic from external applications, and introduces a popular client programming library that
can also be used as a command-line client.

, Deployment Checklist – Going Live, shows us how to prepare a server for
production prime time, explaining what configuration should be taken care of and how to
configure an Nginx reverse proxy for improved security and scalability.

What you need for this book
We will install our Odoo server on an Ubuntu or Debian system, but we expect you to use
your operation system and programming tools of choice, be it Windows, Mac, or other.

We will provide some guidance on setting up a virtual machine with Ubuntu Server. You
should choose a virtualization software to use, such as VirtualBox or VMWare Player; both
are available for free. If you are using a Ubuntu or Debian workstation, no virtual machine
will be needed.

Preface

[3]

As you already figured, our Odoo installation will be using Linux, so we will inevitably use
the command line. However you should be able to follow the instructions given, even if not
familiar with it.

A basic knowledge of the Python programming language is expected. If you're not
comfortable with it, we advise you to follow a quick tutorial to get you started. We will also
make use of XML, so it is desirable to be familiar with the markup syntax.

Who this book is for
This book is targeted at developers with experience developing business applications
willing to quickly become productive with Odoo.

Readers are expected to have an understanding of MVC application design and knowledge
of the Python programming language. Being familiar with web technologies, HTML, CSS,
and JavaScript, will also be helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: Code
words in text are shown as follows: "To create a new database, use the
command."

A block of code is set as follows:

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

task.is_done = not task.is_done

Any command-line input or output is written as follows:

$ ~/odoo-dev/odoo/odoo-bin.py -d demo

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Upon login, you are
presented with the Apps menu, displaying the available applications."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail , and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code bundles from our

rich catalog of books and videos available at .
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from

.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to
and enter the name of the book in the search field. The required information will

appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at , and we will do our best to address the problem.

11
Getting Started with Odoo

Development
Before we dive into Odoo development, we need to set up our development environment
and learn the basic administration tasks for it.

In this chapter, we will learn how to set up the work environment, where we will later build
our Odoo applications. We will learn how to set up a Debian or Ubuntu system to host the
development server instances and how to install Odoo from the GitHub source code.
Then, we will learn how to set up file sharing with Samba, which will allow us to work on
Odoo files from a workstation running Windows or any other operating system.

Odoo is built using the Python programming language, and it uses the PostgreSQL
database for data storage; these are the two main requirements of an Odoo host. To run
Odoo from the source, we will first need to install the Python libraries it depends on. The
Odoo source code can then be downloaded from GitHub. While we can download a ZIP file
or tarball, we will see that it's better if we get the sources using the Git version control
application; it'll help us to have it installed on our Odoo host as well.

Setting up a host for the Odoo server
A Debian/Ubuntu system is recommended for the Odoo server. You will still be able to
work from your favorite desktop system, be it Windows, Mac, or Linux.

Odoo can run on a variety of operating systems, so why pick Debian at the expense of other
operating systems? Because Debian is considered the reference deployment platform by the
Odoo team; it has the best support. It will be easier to find help and additional resources if
we work with Debian/Ubuntu.

Getting Started with Odoo Development

[8]

It's also the platform that the majority of developers work on and where most deployments
are rolled out. So, inevitably, Odoo developers are expected to be comfortable with the
Debian/Ubuntu platform. Even if you're from a Windows background, it will be important
that you have some knowledge about it.

In this chapter, you will learn how to set up and work with Odoo hosted on a Debian-based
system, using only the command line. For those at home with a Windows system, we will
cover how to set up a virtual machine to host the Odoo server. As a bonus, the techniques
you will learn here will also allow you to manage Odoo in cloud servers, where your only
access will be through Secure Shell (SSH).

Keep in mind that these instructions are intended to set up a new system
for development. If you want to try some of them in an existing system,
always take a backup ahead of time in order to be able to restore it in case
something goes wrong.

Provision for a Debian host
As explained earlier, we will need a Debian-based host for our Odoo server. If these are
your first steps with Linux, you may like to note that Ubuntu is a Debian-based Linux
distribution, so they are very similar.

Odoo is guaranteed to work with the current stable version of Debian or Ubuntu. At the
time of writing, these are Debian 8 Jessie and Ubuntu 16.04.1 LTS (Xenial Xerus). Both
ship with Python 2.7, which is necessary to run Odoo. It is worth saying that Odoo does not
support Python 3 yet, so Python 2 is required.

If you are already running Ubuntu or another Debian-based distribution, you're set; this can
also be used as a host for Odoo.

For the Windows and Mac operating systems, install Python, PostgreSQL, and all the
dependencies; next, run Odoo from the source natively. However, this could prove to be a
challenge, so our advice is to use a virtual machine running Debian or Ubuntu Server.
You're welcome to choose your preferred virtualization software to get a working Debian
system in a virtual machine.

In case you need some guidance, here is some advice regarding the virtualization software.
There are several options, such as Microsoft Hyper-V (available in some versions of recent
Windows systems), Oracle VirtualBox, and VMWare Workstation Player (VMWare Fusion
for Mac). The VMWare Workstation Player is probably easier to use, and free-to-use
downloads can be found at .

Getting Started with Odoo Development

[9]

Regarding the Linux image to use, it will be more user-friendly to install Ubuntu Server
than Debian. If you're beginning with Linux, I would recommend that you try a ready-to-
use image. TurnKey Linux provides easy-to-use preinstalled images in several formats,
including ISO. The ISO format will work with any virtualization software you choose, even
on a bare-metal machine you might have. A good option might be the LAPP image, which
includes Python and PostgreSQL, and can be found at

.

Once installed and booted, you should be able to log in to a command-line shell.

Creating a user account for Odoo
If you are logging in using the superuser account, your first task should be to create a
normal user account to use for your work, since it's considered bad practice to work
as . In particular, the Odoo server will refuse to run if you start it as the .

If you are using Ubuntu, you probably won't need this since the installation process must
have already guided you through the creation of a user.

First, make sure is installed. Our work user will need it. If logged in as the ,
execute the following commands:

apt-get update && apt-get upgrade # Install system updates
apt-get install sudo # Make sure 'sudo' is installed

The next set of commands will create an user:

useradd -m -g sudo -s /bin/bash odoo # Create an 'odoo' user with sudo
powers
passwd odoo # Ask and set a password for the new user

You can change to whatever username you may want. The option ensures its home
directory is created. The option adds it to the sudoers list so it can run commands
as the . The option sets the default shell to , which is nicer to use
than the default .

Now we can log in as the new user and set up Odoo.

Getting Started with Odoo Development

[10]

Installing Odoo from the source
Ready-to-install Odoo packages can be found at , available as Windows
(), Debian (), CentOS (), and source code tarballs ().

As developers, we will prefer installing them directly from the GitHub repository. This will
end up giving us more control over versions and updates.

To keep things tidy, let's work in a directory inside our directory.

Throughout the book, we will assume that is the directory
where your Odoo server is installed.

First, make sure you are logged in as the user we created now or during the installation
process, not as the . Assuming your user is , confirm it with the following
command:

$ whoami
odoo
$ echo $HOME
/home/odoo

Now we can use this script. It shows us how to install Odoo from the source into a
Debian/Ubuntu system.

First, install the basic dependencies to get us started:

$ sudo apt-get update && sudo apt-get upgrade #Install system updates
$ sudo apt-get install git # Install Git
$ sudo apt-get install npm # Install NodeJs and its package manager
$ sudo ln -s /usr/bin/nodejs /usr/bin/node # call node runs nodejs
$ sudo npm install -g less less-plugin-clean-css #Install less compiler

Getting Started with Odoo Development

[11]

Starting from version 9.0, the Odoo web client requires the CSS preprocessor to be
installed in the system, in order for web pages to be rendered correctly. To install this, we
need Node.js and npm.

Next, we need to get the Odoo source code and install all its dependencies. The Odoo
source code includes an utility script, inside the directory, to help us install
the required dependencies in a Debian/Ubuntu system:

$ mkdir ~/odoo-dev # Create a directory to work in
$ cd ~/odoo-dev # Go into our work directory
$ git clone https://github.com/odoo/odoo.git -b 10.0 --depth=1 # Get Odoo
source code
$./odoo/setup/setup_dev.py setup_deps # Installs Odoo system dependencies
$./odoo/setup/setup_dev.py setup_pg # Installs PostgreSQL & db superuser
for unix user

At the end, Odoo should be ready to use. The symbol is a shortcut for our directory
(for example,). The option tells Git to explicitly download the
10.0 branch of Odoo. At the time of writing, this is redundant since 10.0 is the default
branch; however, this may change, so it may make the script future-proof. The
option tells Git to download only the last revision, instead of the full change history,
making the download smaller and faster.

To start an Odoo server instance, just run:

$ ~/odoo-dev/odoo/odoo-bin

In Odoo 10, the script, used in previous versions to start the
server, was replaced with .

Getting Started with Odoo Development

[12]

By default, Odoo instances listen on port , so if we point a browser to
, we will reach these instances. When we access it for

the first time, it shows us an assistant to create a new database, as shown in the following
screenshot:

As a developer, we will need to work with several databases, so it's more convenient to
create them from the command line, so we will learn how to do this. Now press Ctrl + C in
the terminal to stop the Odoo server and get back to the command prompt.

Getting Started with Odoo Development

[13]

Initializing a new Odoo database
To be able to create a new database, your user must be a PostgreSQL superuser. The
following command creates a PostgreSQL superuser for the current Unix user:

$ sudo createuser --superuser $(whoami)

To create a new database, use the command. Let's create a database:

$ createdb demo

To initialize this database with the Odoo data schema, we should run Odoo on the empty
database using the option:

$ ~/odoo-dev/odoo/odoo-bin -d demo

This will take a couple of minutes to initialize a database, and it will end with an
INFO log message, Modules loaded.

Note that it might not be the last log message, and it can be in the last
three or four lines. With this, the server will be ready to listen to client
requests.

By default, this will initialize the database with demonstration data, which is often useful
for development databases. To initialize a database without demonstration data, add the

 option to the command.

Now open with your browser to be presented with the
login screen. If you don't know your server name, type the command in the
terminal in order to find it or the command to find the IP address.

If you are hosting Odoo in a virtual machine, you might need to set some network
configurations to be able to access it from your host system. The simplest solution is to
change the virtual machine network type from NAT to Bridged. With this, instead of
sharing the host IP address, the guest virtual machine will have its own IP address. It's also
possible to use NAT, but that requires you to configure port forwarding so your system
knows that some ports, such as , should be handled by the virtual machine. In case
you're having trouble, hopefully these details will help you find relevant information in the
documentation for your chosen virtualization software.

Getting Started with Odoo Development

[14]

The default administrator account is with its password . Upon login, you are
presented with the Apps menu, displaying the available applications:

Whenever you want to stop the Odoo server instance and return to the command line, press
Ctrl + C in the bash prompt. Pressing the up arrow key will bring you the previous shell
command, so it's a quick way to start Odoo again with the same options. The Ctrl + C keys
followed by the up arrow key and Enter is a frequently used combination to restart the
Odoo server during development.

Managing your databases
We've seen how to create and initialize new Odoo databases from the command line. There
are more commands worth knowing for managing databases.

We already know how to use the command to create empty databases, but it can
also create a new database by copying an existing one, using the option.

Make sure your Odoo instance is stopped and you have no other connection open on the
 database we just created, then run this:

$ createdb --template=demo demo-test

In fact, every time we create a database, a template is used. If none is specified, a predefined
one called is used.

Getting Started with Odoo Development

[15]

To list the existing databases in your system, use the PostgreSQL utility with the
option:

$ psql -l

Running it will list the two databases we have created so far: and . The list
will also display the encoding used in each database. The default is UTF-8, which is the
encoding needed for Odoo databases.

To remove a database you no longer need (or want to recreate) to use the
command:

$ dropdb demo-test

Now you know the basics to work with databases. To learn more about PostgreSQL, refer to
the official documentation at .

WARNING:
The drop database command will irrevocably destroy your data. Be
careful when using it and always keep backups of important databases
before using this command.

A word about Odoo product versions
At the time of writing, Odoo's latest stable version is version 10, marked on GitHub as
branch 10.0. This is the version we will work with throughout the book.

It's important to note that Odoo databases are incompatible between Odoo
major versions. This means that if you run an Odoo 10 server against a
database created for a previous major version of Odoo, it won't work.
Non-trivial migration work is needed before a database can be used with a
later version of the product.

The same is true for addon modules: as a general rule, an addon module developed for an
Odoo major version will not work with other versions. When downloading a community
module from the web, make sure it targets the Odoo version you are using.

On the other hand, major releases (9.0, 10.0) are expected to receive frequent updates, but
these should be mostly bug fixes. They are assured to be API stable , meaning model data
structures and view element identifiers will remain stable. This is important because it
means there will be no risk of custom modules breaking due to incompatible changes in the
upstream core modules.

Getting Started with Odoo Development

[16]

Be warned that the version in the branch will result in the next major stable version,
but until then, it's not API stable and you should not use it to build custom modules.
Doing so is like moving on quicksand: you can't be sure when some changes will be
introduced that will break your custom module.

More server configuration options
The Odoo server supports quite a few other options. We can check all the available options
with :

$./odoo-bin --help

We will review some of the most important options in the following sections. Let's start by
looking at how the currently active options can be saved in a configuration file.

Odoo server configuration files
Most of the options can be saved in a configuration file. By default, Odoo will use the

 file in your home directory. In Linux systems its default location is in the
directory (), and in the Windows distribution it is in the same directory as the
executable used to launch Odoo.

In previous Odoo/OpenERP versions, the name for the default
configuration file was . For backward compatibility,
Odoo 10 will still use this if it's present and no file is found.

On a clean install, the configuration file is not automatically created. We should
use the option to create the default configuration file, if it doesn't exist yet, and
store the current instance configuration into it:

$ ~/odoo-dev/odoo/odoo-bin --save --stop-after-init #save configuration to
file

Here, we also used the option to stop the server after it finishes its
actions. This option is often used when running tests or asking to run a module upgrade to
check whether it is installed correctly.

Getting Started with Odoo Development

[17]

Now we can inspect what was saved in this default configuration file:

$ more ~/.odoorc # show the configuration file

This will show all the configuration options available with their default values. Editing
them will be effective the next time you start an Odoo instance. Type to quit and go back
to the prompt.

We can also choose to use a specific configuration file, using the
option. Configuration files don't need to have all those options you've just seen. Only the
ones that actually change a default value need to be there.

Changing the listening port
The command option allows us to change the listening port of a
server instance from the default 8069. This can be used to run more than one instance at the
same time, on the same machine.

Let's try this out. Open two terminal windows. On the first, run this:

$ ~/odoo-dev/odoo/odoo-bin --xmlrpc-port=8070

Run the following command on the second terminal:

$ ~/odoo-dev/odoo/odoo-bin --xmlrpc-port=8071

There you go: two Odoo instances on the same server listening on different ports! The two
instances can use the same or different databases, depending on the configuration
parameters used. And the two could be running the same or different versions of Odoo.

The database filter option
When developing with Odoo, it is frequent to work with several databases, and sometimes
even with different Odoo versions. Stopping and starting different server instances on the
same port, and switching between different databases, can cause web client sessions to
behave improperly.

Accessing our instance using a browser window running in private mode can help avoiding
some of these problems.

Getting Started with Odoo Development

[18]

Another good practice is to enable a database filter on the server instance to ensure that it
only allows requests for the database we want to work with, ignoring all others. This is
done with the option. It accepts a regular expression to be used as a filter for
the valid database names. To match an exact name, the expression should begin with a
and end with .

For example, to allow only the database we would use this command:

$ ~/odoo-dev/odoo/odoo-bin --db-filter=^demo$

Managing server log messages
The option allows us to set the log verbosity. This can be very useful to
understand what is going on in the server. For example, to enable the debug log level, use
 option.

The following log levels can be particularly interesting:

 to inspect SQL queries generated by the server
 to detail the requests received by the server

 to detail the responses sent by the server

By default, the log output is directed to standard output (your console screen), but it can be
directed to a log file with the option.

Finally, the option will bring up the Python debugger () when an exception
is raised. It's useful to do a post-mortem analysis of a server error. Note that it doesn't have
any effect on the logger verbosity. More details on the Python debugger commands can be
found at .

Developing from your workstation
You may be running Odoo with a Debian/Ubuntu system either in a local virtual machine
or in a server over the network. But you may prefer to do the development work at your
personal workstation, using your favorite text editor or IDE. This may frequently be the
case for developers working from Windows workstations. But it also may be the case for
Linux users who need to work on an Odoo server over the local network.

Getting Started with Odoo Development

[19]

A solution for this is to enable file sharing in the Odoo host so that files are made easy for
editing from our workstation. For Odoo server operations, such as a server restart, we can
use an SSH shell (such as PuTTY on Windows) alongside our favorite editor.

Using a Linux text editor
Sooner or later, we will need to edit files from the shell command line. In many Debian
systems, the default text editor is vi. If you're not comfortable with it, you probably could
use a friendlier alternative. In Ubuntu systems, the default text editor is nano. You might
prefer it since it's easier to use. In case it's not available in your server, it can be installed
with:

$ sudo apt-get install nano

In the following sections, we will assume nano as the preferred editor. If you prefer any
other editor, feel free to adapt the commands accordingly.

Installing and configuring Samba
The Samba service helps make Linux file-sharing services compatible with Microsoft
Windows systems. We can install it on our Debian/Ubuntu server with this command:

$ sudo apt-get install samba samba-common-bin

The package installs the file-sharing services, and the package
is needed for the tool. By default, users allowed to access shared files need to be
registered with it. We need to register our user, for example, and set a password for its
file share access:

$ sudo smbpasswd -a odoo

After this, we will be asked for a password to use to access the shared directory, and the
 user will be able to access shared files for its home directory, although it will be read

only. We want to have write access, so we need to edit the Samba configuration file to
change it as follows:

$ sudo nano /etc/samba/smb.conf

Getting Started with Odoo Development

[20]

In the configuration file, look for the section. Edit its configuration lines so that
they match the settings as follows:

For the configuration changes to take effect, restart the service:

$ sudo /etc/init.d/smbd restart

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at . If you
purchased this book from elsewhere, you can visit

and register to have the files e-mailed directly to you.

To access the files from Windows, we can map a network drive for the path
 using the specific username and password defined with .

When trying to log in with the user, you might encounter trouble with Windows
adding the computer's domain to the username (for example,). To avoid this,
use an empty domain by prepending a character to the login (for example,):

Getting Started with Odoo Development

[21]

If we now open the mapped drive with Windows Explorer, we will be able to access and
edit the contents of the user's home directory:

Odoo includes a couple of tools that are very helpful for developers, and we will make use
of them throughout the book. They are technical features and the developer mode. These
are disabled by default, so this is a good moment to learn how to enable them.

Activating the developer tools
The developer tools provide advanced server configuration and features. These include a
debug menu in the top menu bar along with additional menu options in the Settings menu,
in particular the Technical menu.

Getting Started with Odoo Development

[22]

These tools come disabled by default, and to enable them, we need to log in as admin. In the
top menu bar, select the Settings menu. At the bottom-right, below the Odoo version, you
will find two options to enable the developer mode; any of them will enable the Debug and
Technical menus. The second option, Activate the developer mode (with assets), also
disables the minification of JavaScript and CSS used by the web client, making it easier to
debug client-side behavior:

After that, the page is reloaded and you should see a bug icon in the top menu bar, just
before the session user avatar and name providing the debug mode options. And in the
Settings option in the top menu, we should see a new Technical menu section giving access
to many Odoo instance internals:

Getting Started with Odoo Development

[23]

The Technical menu option allows us to inspect and edit all the Odoo
configurations stored in the database, from user interface to security and
other system parameters. You will be learning more about many of these
throughout the book.

Installing third-party modules
Making new modules available in an Odoo instance so they can be installed is something
that newcomers to Odoo frequently find confusing. But it doesn't have to be so, so let's
demystify it.

Finding community modules
There are many Odoo modules available on the Internet. The Odoo apps store at

 is a catalogue of modules that can be downloaded and installed on your
system. The Odoo Community Association (OCA) coordinates community contributions
and maintains quite a few module repositories on GitHub at .

Getting Started with Odoo Development

[24]

To add a module to an Odoo installation, we could just copy it into the directory
alongside the official modules. In our case, the directory is at

. This might not be the best option for us since our Odoo installation is
based on a version-controlled code repository, and we will want to keep it synchronized
with the GitHub repository.

Fortunately, we can use additional locations for modules so we can keep our custom
modules in a different directory, without having them mixed with the official ones.

As an example, we will download the code from this book, available in GitHub, and make
those addon modules available in our Odoo installation.

To get the source code from GitHub, run the following commands:

$ cd ~/odoo-dev
$ git clone https://github.com/dreispt/todo_app.git -b 10.0

We used the option to make sure we are downloading the modules for the 10.0 version.

After this, we will have a new directory alongside the directory,
containing the modules. Now we need to let Odoo know about this new module directory.

Configuring the addons path
The Odoo server has a configuration option called to set where the server
should look for modules. By default, this points to the directory, where the Odoo
server is running.

We can provide not only one, but a list of directories where modules can be found. This
allows us to keep our custom modules in a different directory, without having them mixed
with the official addons.

Let's start the server with an addons path that includes our new module directory:

$ cd ~/odoo-dev/odoo
$./odoo-bin -d demo --addons-path="../todo_app,./addons"

If you look closer at the server log, you will notice a line reporting the addons path in use:
. Confirm that it contains our directory.

Getting Started with Odoo Development

[25]

Updating the apps list
We still need to ask Odoo to update its module list before these new modules are made
available for installation.

For this, we need developer mode enabled, since it provides the Update Apps List menu
option. It can be found in the Apps top menu.

After updating the modules list, we can confirm the new modules are available for
installation. Use the Apps menu option to see the list of local modules. Search for and
you should see the new modules made available.

Note that the second App Store menu option displays the module list from Odoo apps store
instead of your local modules:

Getting Started with Odoo Development

[26]

Summary
In this chapter, we learned how to set up a Debian system to host Odoo and install it from
the GitHub source code. We also learned how to create Odoo databases and run Odoo
instances. To allow developers to use their favorite tools in their personal workstation, we
explained how to configure file sharing in the Odoo host.

We should now have a functioning Odoo environment to work with and be comfortable
with managing databases and instances.

With this in place, we're ready to go straight into action. In the next chapter, we will create
our first Odoo module from scratch and understand the main elements it involves.

So let's get started!

22
Building Your First Odoo

Application
Developing in Odoo most of the time means creating our own modules. In this chapter, we
will create our first Odoo application and learn the steps needed to make it available to
Odoo and install it.

Inspired by the notable project, we will build a simple To-Do
application. It should allow us to add new tasks, mark them as completed, and finally clear
the task list of all the already completed tasks.

We will get started by learning the basics of a development workflow: set up a new instance
for your work, create and install a new module, and update it to apply the changes you
make along with the development iterations.

Odoo follows an MVC-like architecture, and we will go through the layers during our
implementation of the To-Do application:

The model layer, defining the structure of the app's data
The view layer, describing the user interface
The controller layer, supporting the business logic of the application

Next, we will learn how to set up access control security and, finally, we will add some
description and branding information to the module.

Note that the concept of the term controller mentioned here is different
from the Odoo web development controllers. These are program
endpoints that web pages can call to perform actions.

Building Your First Odoo Application

[28]

With this approach, you will be able to gradually learn about the basic building blocks that
make up an application and experience the iterative process of building an Odoo module
from scratch.

Essential concepts
You're probably just getting started with Odoo, so now is obviously a good time to explain
Odoo modules and how they are used in an Odoo development.

Understanding applications and modules
It's common to hear about Odoo modules and applications. But what exactly is the
difference between them?

Module addons are the building blocks for Odoo applications. A module can add new
features to Odoo, or modify existing ones. It is a directory containing a manifest, or
descriptor file, named , plus the remaining files that implement its
features.

Applications are the way major features are added to Odoo. They provide the core
elements for a functional area, such as Accounting or HR, based on which additional addon
modules modify or extend features. Because of this, they are highlighted in the Odoo Apps
menu.

If your module is complex, and adds new or major functionality to Odoo, you might
consider creating it as an application. If your module just makes changes to existing
functionality in Odoo, it is likely not an application.

Whether a module is an application or not is defined in the manifest. Technically it does not
have any particular effect on how the addon module behaves. It is only used for a highlight
in the Apps list.

Modifying and extending modules
In the example that we are going to follow, we will create a new module with as few
dependencies as possible.

This will not be the typical case, however. Mostly, we will either modify or extend an
already existing module.

Building Your First Odoo Application

[29]

As a general rule, it's considered a bad practice to modify existing modules by changing
their source code directly. This is especially true for the official modules provided by Odoo.
Doing so does not allow you to have a clear separation between the original module code
and the modifications, and this makes it difficult to apply upgrades since they would
overwrite the modifications.

Instead, we should create the extension modules to be installed next to the modules we
want to modify, implementing the changes we need. In fact, one of Odoo's main strengths is
the inheritance mechanism, which allows custom modules to extend existing modules,
either officially or from the community. The inheritance is possible at all levels: data
models, business logic, and user interface layers.

In this chapter, we will create a completely new module, without extending any existing
module, to focus on the different parts and steps involved in module creation. We will have
just a brief look at each part since each one of them will be studied in more detail in the later
chapters.

Once we are comfortable with creating a new module, we can dive into the inheritance
mechanism, which will be introduced in , Inheritance Extending Existing
Applications.

To get productive developing for Odoo we should be comfortable with the development
workflow: managing the development environment, applying code changes, and checking
the results. This section will guide you through these basics.

Creating the module basic skeleton
Following the instructions in , Getting Started with Odoo Development, we should
have the Odoo server at . To keep things tidy, we will create a new
directory alongside it to host our custom modules, at .

Odoo includes a command to automatically create a new module directory, with
a basic structure already in place. You can learn more about it with the following command:

$ ~/odoo-dev/odoo/odoo-bin scaffold --help

You might want to keep this in mind when you start working on your next module, but we
won't be using it right now since we will prefer to manually create all the structure for our
module.

An Odoo addon module is a directory containing a descriptor file.

Building Your First Odoo Application

[30]

In previous versions, this descriptor file was named .
This name is still supported but is deprecated.

It also needs to be Python importable, so it must also have a file.

The module's directory name is its technical name. We will use for it. The
technical name must be a valid Python identifier: it should begin with a letter and can only
contain letters, numbers, and the underscore character.

The following commands will create the module directory and create an empty
 file in it, .

In case you would like to do that directly from the command line, this is what you would
use:

$ mkdir ~/odoo-dev/custom-addons/todo_app
$ touch ~/odoo-dev/custom-addons/todo_app/__init__.py

Next, we need to create the manifest file. It should contain only a Python dictionary with
about a dozen possible attributes; of this, only the attribute is required. The

 attribute, for a longer description, and the attribute provide better
visibility and are advised.

We should now add a file alongside the file with the
following content:

The attribute can have a list of other modules that are required. Odoo will have
them automatically installed when this module is installed. It's not a mandatory attribute,
but it's advised to always have it. If no particular dependencies are needed, we should
depend on the core module.

You should be careful to ensure all dependencies are explicitly set here; otherwise, the
module may fail to install in a clean database (due to missing dependencies) or have
loading errors if by chance the other required modules are loaded afterward.

Building Your First Odoo Application

[31]

For our application, we don't need any specific dependencies, so we depend on the
module only.

To be concise, we chose to use very few descriptor keys, but, in a real word scenario, we
recommend that you also use the additional keys, since they are relevant for the Odoo apps
store:

 is displayed as a subtitle for the module.
, by default, is . It should follow semantic versioning rules (see

 for details).
 identifier, by default is .
 is a URL to find more information about the module. This can help

people find more documentation or the issue tracker to file bugs and suggestions.
 is the functional category of the module, which defaults to

. The list of existing categories can be found in the security
groups form (Settings | User | Groups), in the Application field drop-down list.

These other descriptor keys are also available:

 is by default but can be set to to disable a module.
 if set to , this module will be automatically installed,

provided all its dependencies are already installed. It is used for the glue
modules.

Since Odoo 8.0, instead of the key, we can use an or
file in the module's top directory.

A word about licenses
Choosing a license for your work is very important, and you should consider carefully what
is the best choice for you, and its implications. The most used licenses for Odoo modules are
the GNU Lesser General Public License (LGLP) and the Affero General Public License
(AGPL). The LGPL is more permissive and allows commercial derivate work, without the
need to share the corresponding source code. The AGPL is a stronger open source license,
and requires derivate work and service hosting to share their source code. Learn more
about the GNU licenses at .

Building Your First Odoo Application

[32]

Adding to the addons path
Now that we have a minimalistic new module, we want to make it available to the Odoo
instance.

For this, we need to make sure the directory containing the module is in the addons path,
then update the Odoo module list.

Both actions have been explained in detail in the previous chapter, but here, we will
continue with a brief overview of what is needed.

We will position in our work directory and start the server with the appropriate addons
path configuration:

$ cd ~/odoo-dev
$./odoo/odoo-bin -d todo --addons-path="custom-addons,odoo/addons" --save

The option saves the options you used in a configuration file. This spares us from
repeating them every time we restart the server: just run and the last saved
option will be used.

Look closely at the server log. It should have an
line. It should include our directory.

Remember to also include any other addon directories you might be using. For instance, if
you also have a directory containing additional modules to be
used, you might want to include them also using the option:

--addons-path="custom-addons,extra,odoo/addons"

Now we need the Odoo instance to acknowledge the new module we just added.

Installing the new module
In the Apps top menu, select the Update Apps List option. This will update the module list,
adding any modules that may have been added since the last update to the list. Remember
that we need the developer mode enabled for this option to be visible. That is done in
the Settings dashboard, in the link at the bottom-right, below the Odoo version number
information.

Building Your First Odoo Application

[33]

Make sure your web client session is working with the right database. You
can check that at the top-right: the database name is shown in parenthesis,
right after the username. A way to enforce using the correct database is to
start the server instance with the additional option

.

The Apps option shows us the list of available modules. By default, it shows only the
application modules. Since we have created an application module, we don't need to
remove that filter to see it. Type in the search and you should see our new module,
ready to be installed:

Now click on the module's Install button and we're ready!

Upgrading a module
Developing a module is an iterative process, and you will want changes made on source
files to be applied to and made visible in Odoo.

In many cases, this is done by upgrading the module: look up the module in the Apps list
and once it is already installed, you will have an Upgrade button available.

However, when the changes are only in Python code, the upgrade may not have an effect.
Instead of a module upgrade, an application server restart is needed. Since Odoo loads
Python code only once, any later changes to code require a server restart to be applied.

Building Your First Odoo Application

[34]

In some cases, if the module changes were in both data files and Python code, you might
need both the operations. This is a common source of confusion for new Odoo developers.

But fortunately, there is a better way. The safest and fastest way to make all our changes to
a module effective is to stop and restart the server instance, requesting our modules to be
upgraded to our work database.

In the terminal where the server instance is running, use Ctrl + C to stop it. Then, start the
server and upgrade the module using the following command:

$./odoo-bin -d todo -u todo_app

The option (or in the long form) requires the option and accepts a comma-
separated list of modules to update. For example, we could use . When
a module is updated, all other installed modules depending on it are also updated. This is
essential to maintain the integrity of the inheritance mechanisms, used to extend features.

Throughout the book, when you need to apply the work done in modules, the safest way is
to restart the Odoo instance with the preceding command. Pressing the up arrow key brings
to you the previous command that was used. So, most of the time, you will find yourself
using the Ctrl + C, up, and Enter key combination.

Unfortunately, both updating the module list and uninstalling modules are both actions
that are not available through the command line. These need to be done through the web
interface in the Apps menu.

The server development mode
In Odoo 10 a new option was introduced providing developer-friendly features. To use it
start the server instance with the additional option .

This enables a few handy features to speed up our development cycle. The most important
are:

Reload Python code automatically, once a Python file is saved, avoiding a manual
server restart
Read view definitions directly from the XML files, avoiding manual module
upgrades

Building Your First Odoo Application

[35]

The option accepts a comma-separated list of options, although the option will
be suitable most of the time. We can also specify the debugger we prefer to use. By default
the Python debugger, , is used. Some people might prefer to install and use alternative
debuggers. Here also supported are and .

The model layer
Now that Odoo knows about our new module, let's start by adding a simple model to it.

Models describe business objects, such as an opportunity, sales order, or partner (customer,
supplier, and so on). A model has a list of attributes and can also define its specific business.

Models are implemented using a Python class derived from an Odoo template class. They
translate directly to database objects, and Odoo automatically takes care of this when
installing or upgrading the module. The mechanism responsible for this is the Object
Relational Model (ORM).

Our module will be a very simple application to keep to-do tasks. These tasks will have a
single text field for the description and a checkbox to mark them as complete. We should
later add a button to clean the to-do list of the old, completed tasks.

Creating the data model
The Odoo development guidelines state that the Python files for models should be placed
inside a subdirectory. For simplicity, we won't be following this here, so let's create
a file in the main directory of the module.

Add the following content to it:

Building Your First Odoo Application

[36]

The first line is a special marker telling the Python interpreter that this file has UTF-8 so that
it can expect and handle non-ASCII characters. We won't be using any, but it's a good
practice to have it anyway.

The second line is a Python code import statement, making available the and
 objects from the Odoo core.

The third line declares our new model. It's a class derived from .

The next line sets the attribute defining the identifier that will be used throughout
Odoo to refer to this model. Note that the actual Python class name, in this case,
is meaningless to other Odoo modules. The value is what will be used as an
identifier.

Notice that this and the following lines are indented. If you're not familiar with Python, you
should know that this is important: indentation defines a nested code block, so these four
lines should all be equally indented.

Then we have the model attribute. It is not mandatory, but it provides a
user-friendly name for the model records, that can be used for better user messages.

The last three lines define the model's fields. It's worth noting that and are
special field names. By default, Odoo will use the field as the record's title when
referencing it from other models. The field is used to inactivate records, and by
default, only active records will be shown. We will use it to clear away completed tasks
without actually deleting them from the database.

Right now, this file is not yet used by the module. We must tell Python to load it with the
module in the file. Let's edit it to add the following line:

That's it! For our Python code changes to take effect, the server instance needs to be
restarted (unless it was using the mode).

Building Your First Odoo Application

[37]

We won't see any menu option to access this new model since we didn't add them yet. Still,
we can inspect the newly created model using the Technical menu. In the Settings top
menu, go to Technical | Database Structure | Models, search for the model on
the list, and click on it to see its definition:

If everything goes right, it is confirmed that the model and fields were created. If you can't
see them here, try a server restart with a module upgrade, as described before.

We can also see some additional fields we didn't declare. These are reserved fields Odoo
automatically adds to every new model. They are as follows:

 is a unique numeric identifier for each record in the model.
 and specify when the record was created and who

created it respectively.
 and confirm when the record was last modified and

who modified it respectively.
 is a helper that is not actually stored in the database. It is used

for concurrency checks.

Building Your First Odoo Application

[38]

Adding automated tests
Programming best practices include having automated tests for your code. This is even
more important for dynamic languages such as Python. Since there is no compilation step,
you can't be sure there are no syntactic errors until the code is actually run by the
interpreter. A good editor can help us spot these problems ahead of time, but can't help us
ensure the code performs as intended like automated tests can.

Odoo supports two ways to describe tests: either using YAML data files or using Python
code, based on the library. YAML tests are a legacy from older versions, and are
not recommended. We will prefer using Python tests and will add a basic test case to our
module.

The test code files should have a name starting with and should be imported from
. But the directory (or Python submodule) should not be

imported from the module's top , since it will be automatically discovered
and loaded only when tests are executed.

Tests must be placed in a subdirectory. Add a file with the
following:

Now add the actual test code, available in the file:

This adds a simple test case to create a new to-do task and verifies that the Is Done? field
has the correct default value.

Now we want to run our tests. This is done by adding the option while
installing the module:

$./odoo-bin -d todo -i todo_app --test-enable

Building Your First Odoo Application

[39]

The Odoo server will look for a subdirectory in the upgraded modules and will run
them. If any of the tests fail, the server log will show that.

The view layer
The view layer describes the user interface. Views are defined using XML, which is used by
the web client framework to generate data-aware HTML views.

We have menu items that can activate actions that can render views. For example, the Users
menu item processes an action also called Users, that in turn renders a series of views.
There are several view types available, such as the list and form views, and the filter options
made available are also defined by a particular type of view, the search view.

The Odoo development guidelines states that the XML files defining the user interface
should be placed inside a subdirectory.

Let's start creating the user interface for our To-Do application.

Adding menu items
Now that we have a model to store our data, we should make it available on the user
interface.

For that, we should add a menu option to open the model so that it can be
used.

Create the file to define a menu item and the action performed by
it:

Building Your First Odoo Application

[40]

The user interface, including menu options and actions, is stored in database tables. The
XML file is a data file used to load those definitions into the database when the module is
installed or upgraded. The preceding code is an Odoo data file, describing two records to
add to Odoo:

The element defines a client-side window action that will open
the model with the and views enabled, in that order.
The defines a top menu item calling the action,
which was defined before.

Both elements include an attribute. This attribute also called an XML ID, is very
important: it is used to uniquely identify each data element inside the module, and can be
used by other elements to reference it. In this case, the element needs to
reference the action to process, and needs to make use of the ID for that.
XML IDs are discussed in greater detail in , Module Data.

Our module does not yet know about the new XML data file. This is done by adding it to
the attribute in the file. It holds the list of files to be loaded by the
module. Add this attribute to the manifest's dictionary:

Now we need to upgrade the module again for these changes to take effect. Go to the Todos
top menu and you should see our new menu option available:

Even though we haven't defined our user interface view, clicking on the Todos menu will
open an automatically generated form for our model, allowing us to add and edit records.

Building Your First Odoo Application

[41]

Odoo is nice enough to automatically generate them so that we can start working with our
model right away.

So far, so good! Let's improve our user interface now. Try making gradual improvements as
shown in the next sections, doing frequent module upgrades, and don't be afraid to
experiment. You might also want to try the server option. Using it the view
definitions are read directly from the XML files so that your changes can be immediately
available to Odoo without the need of a module upgrade.

If an upgrade fails because of an XML error, don't panic! Comment out the
last edited XML portions or remove the XML file from
and repeat the upgrade. The server should start correctly. Now read the
error message in the server log carefully: it should point you to where the
problem is.

Odoo supports several types of views, but the three most important ones are: (usually
called list views), , and views. We'll add an example of each to our module.

Creating the form view
All views are stored in the database, in the model. To add a view to a module,
we declare a element describing the view in an XML file, which is to be loaded
into the database when the module is installed.

Add this new file to define our form view:

 <form string="To-do Task">
 <group>
 <field name="name"/>
 <field name="is_done"/>
 <field name="active" readonly="1"/>
 </group>
 </form>

Building Your First Odoo Application

[42]

Remember to add this new file to the key in the manifest file, otherwise, our module
won't know about it and it won't be loaded.

This will add a record to the model with the identifier
. The view is for the model and is named

. The name is just for information; it does not have to be unique, but it should allow
one to easily identify which record it refers to. In fact, the name can be entirely omitted, in
that case, it will be automatically generated from the model name and the view type.

The most important attribute is , and it contains the view definition, highlighted in the
XML code above. The tag defines the view type, and in this case, contains three
fields. We also added an attribute to the field to make it read only.

Business document form views
The preceding section provided a basic form view, but we can make some improvements on
it. For document models, Odoo has a presentation style that mimics a paper page. This form
contains two elements: to contain action buttons and to contain the
data fields.

We can now replace the basic defined in the previous section with this one:

 <header>

 </header>
<sheet>

 </sheet>

Adding action buttons
Forms can have buttons to perform actions. These buttons are able to run window actions
such as opening another form or run Python functions defined in the model.

Building Your First Odoo Application

[43]

They can be placed anywhere inside a form, but for document-style forms, the
recommended place for them is the section.

For our application, we will add two buttons to run the methods of the model:

<button name="do_toggle_done" type="object"
 string="Toggle Done" class="oe_highlight" />
 <button name="do_clear_done" type="object"
 string="Clear All Done" />

The basic attributes of a button comprise the following:

 with the text to display on the button
 of action it performs
 is the identifier for that action

 is an optional attribute to apply CSS styles, like in regular HTML

Using groups to organize forms
The tag allows you to organize the form content. Placing elements inside
a element creates a two column layout inside the outer group. Group elements are
advised to have a attribute so that its easier for other modules to extend them.

We will use this to better organize our content. Let's change the content of our
form to match this:

<group name="group_top">
 <group name="group_left">

</group>
 <group name="group_right">

</group>
 </group>

Building Your First Odoo Application

[44]

The complete form view
At this point, our form view should look like this:

Remember that, for the changes to be loaded to our Odoo database, a
module upgrade is needed. To see the changes in the web client, the form
needs to be reloaded: either click again on the menu option that opens it or
reload the browser page (F5 in most browsers).

The action buttons won't work yet since we still need to add their business logic.

Adding list and search views
When viewing a model in list mode, a view is used. Tree views are capable of
displaying lines organized in hierarchies, but most of the time, they are used to display
plain lists.

We can add the following view definition to :

Building Your First Odoo Application

[45]

This defines a list with only two columns: and . We also added a nice touch:
the lines for done tasks () are shown grayed out. This is done applying the
Bootstrap class . Check
for more information on Bootstrap and its contextual colors.

At the top-right corner of the list, Odoo displays a search box. The fields it searches in and
the available filters are defined by a view.

As before, we will add this to :

 <search>
 <field name="name"/>
 <filter string="Not Done"
 domain="[('is_done','=',False)]"/>
 <filter string="Done"
 domain="[('is_done','!=',False)]"/>
 </search>

The elements define fields that are also searched when typing in the search box.
The elements add predefined filter conditions, that can be toggled with a user
click, defined using a specific syntax.

The business logic layer
Now we will add some logic to our buttons. This is done with Python code, using the
methods in the model's Python class.

Building Your First Odoo Application

[46]

Adding business logic
We should edit the Python file to add to the class the methods called by
the buttons. First, we need to import the new API, so add it to the import statement at the
top of the Python file:

The action of the Toggle Done button will be very simple: just toggle the Is Done? flag. For
logic on records, use the decorator. Here, will represent a recordset, and
we should then loop through each record.

Inside the class, add this:

The code loops through all the to-do task records and, for each one, modifies the
field, inverting its value. The method does not need to return anything, but we should have
it to at least return a value. The reason is that clients can use XML-RPC to call these
methods, and this protocol does not support server functions returning just a value.

For the Clear All Done button, we want to go a little further. It should look for all active
records that are done, and make them inactive. Usually form buttons are expected to act
only on the selected record, but in this case, we will want it also act on records other than
the current one:

On methods decorated with , the variable represents the model with no
record in particular. We will build a recordset containing all the tasks that are
marked as done. Then, we set the flag to on them.

The method is an API method that returns the records that meet some conditions.
These conditions are written in a domain, which is a list of triplets. We'll explore domains in
more detail in , Views Designing the User Interface.

Building Your First Odoo Application

[47]

The method sets the values at once on all the elements of the recordset. The values to
write are described using a dictionary. Using here is more efficient than iterating
through the recordset to assign the value to each of them one by one.

Adding tests
Now we should add tests for the business logic. Ideally, we want every line of code to be
covered by at least one test case. In , add a few more lines of code to
the method:

 # Test Toggle Done
 task.do_toggle_done()
 self.assertTrue(task.is_done)
 # Test Clear Done
 Todo.do_clear_done()
 self.assertFalse(task.active)

If we now run the tests and the model methods are correctly written, we should see no error
messages in the server log:

$./odoo-bin -d todo -i todo_app --test-enable

Setting up access security
You might have noticed that, upon loading, our module is getting a warning message in the
server log:

The model todo.task has no access rules, consider adding one.

The message is pretty clear: our new model has no access rules, so it can't be used by
anyone other than the admin superuser. As a superuser, the ignores data access
rules, and that's why we were able to use the form without errors. But we must fix this
before other users can use our model.

Another issue we have yet to address is that we want the to-do tasks to be private to each
user. Odoo supports row-level access rules, which we will use to implement that.

Building Your First Odoo Application

[48]

Testing access security
In fact, our tests should be failing right now due to the missing access rules. They aren't
because they are done with the admin user. So, we should change them so that they use the
Demo user instead.

For this, we should edit the file to add a method:

This first instruction calls the code of the parent class. The next ones change the
environment used to run the tests, , to a new one using the Demo user. No further
changes are needed to the tests we already wrote.

We should also add a test case to make sure that users can see only their own tasks. For this,
first, add an additional import at the top:

Next, add an additional method to the test class:

Since our method is now using the Demo user, we used the method to change
the context to the admin user. We then use it to create a task that should not be accessible to
the Demo user.

When trying to access this task data, we expect an exception to be raised.

If we run the tests now, they should fail, so let's take care of that.

Building Your First Odoo Application

[49]

Adding access control security
To get a picture of what information is needed to add access rules to a model, use the web
client and go to Settings | Technical | Security | Access Controls List:

Here we can see the ACL for some models. It indicates, per security group,
what actions are allowed on records.

This information has to be provided by the module using a data file to load the lines into
the model. We will add full access to the employee group on the model.
Employee is the basic access group nearly everyone belongs to.

This is done using a CSV file named . Let's add it with
the following content:

Building Your First Odoo Application

[50]

The filename corresponds to the model to load the data into, and the first line of the file has
the column names. These are the columns provided in our CSV file:

 is the record external identifier (also known as XML ID). It should be unique
in our module.

 is a description title. It is only informative and it's best if it's kept unique.
Official modules usually use a dot-separated string with the model name and the
group. Following this convention, we used .

 is the external identifier for the model we are giving access to. Models
have XML IDs automatically generated by the ORM: for , the
identifier is .

 identifies the security group to give permissions to. The most
important ones are provided by the module. The Employee group is such a
case and has the identifier .

 fields flag the access to grant , , , or (delete)
access.

We must not forget to add the reference to this new file in the
descriptor's attribute. It should look like this:

As before, upgrade the module for these additions to take effect. The warning message
should be gone, and we can confirm that the permissions are OK by logging in with the
user (password is also). If we run our tests now they should only fail the

 test case.

Building Your First Odoo Application

[51]

Row-level access rules
We can find the Record Rules option in the Technical menu, alongside Access Control List.

Record rules are defined in the model. As usual, we need to provide a distinctive
name. We also need the model they operate on and the domain filter to use for the access
restriction. The domain filter uses the usual list of tuples syntax used across Odoo.

Usually, rules apply to some particular security groups. In our case, we will make it apply
to the Employees group. If it applies to no security group, in particular, it is considered
global (the field is automatically set to). Global rules are different because
they impose restrictions that non-global rules can't override.

To add the record rule, we should create a file with
the following content:

Notice the attribute. It means this data will not be updated
in module upgrades. This will allow it to be customized later since module
upgrades won't destroy user-made changes. But be aware that this will
also be the case while developing, so you might want to set

 during development until you're happy with the data file.

In the field, you will also find a special expression. It's a one-to-many relational
field, and they have a special syntax to operate with. In this case, the tuple indicates
to append to the records, and here is a reference to the Employees group, identified by

. This one-to-many writing special syntax is discussed in more detail in
, Module Data.

Building Your First Odoo Application

[52]

As before, we must add the file to before it can be loaded into the
module:

If we did everything right, we can run the module tests and now they should pass.

Better describing the module
Our module is looking good. Why not add an icon to it to make it look even better? For this,
we just need to add to the module a file with the icon to
use.

We will be reusing the icon of the existing Notes application, so we should copy the
 file into the

 directory.

The following commands should do that trick for us:

$ mkdir -p ~/odoo-dev/custom-addons/todo_app/static/description
$ cp ~/odoo-dev/odoo/addons/note/static/description/icon.png ~/odoo-
dev/custom-addons/todo_app/static/description

Now, if we update the module list, our module should be displayed with the new icon.

We can also add a better description to it to explain what it does and how great it is. This
can be done in the key of the file. However, the preferred
way is to add a file to the module root directory.

Building Your First Odoo Application

[53]

Summary
We created a new module from the start, covering the most frequently used elements in a
module: models, the three basic types of views (form, list, and search), business logic in
model methods, and access security.

In the process, we got familiar with the module development process, which involves
module upgrades and application server restarts to make the gradual changes effective in
Odoo.

Always remember, when adding model fields, an upgrade is needed. When changing
Python code, including the manifest file, a restart is needed. When changing XML or CSV
files, an upgrade is needed; also, when in doubt, do both: restart the server and upgrade the
modules.

In the next chapter, you will learn how to build modules that will stack on existing ones in
order to add features.

33
Inheritance – Extending

Existing Applications
One of Odoo's most powerful feature is the ability to add features without directly
modifying the underlying objects.

This is achieved through inheritance mechanisms, functioning as modification layers on top
of existing objects. These modifications can happen at all levels: models, views, and
business logic. Instead of directly modifying an existing module, we create a new module to
add the intended modifications.

In this chapter, you will learn how to write your own extension modules, empowering you
to leverage the existing core or community applications. As a relevant example, you will
learn how to add Odoo's social and messaging features to your own modules.

Adding sharing capabilities to the To-Do app
Our To-Do application now allows users to privately manage their own to-do tasks. Won't
it be great to take the app to another level by adding collaboration and social networking
features to it? We will be able to share tasks and discuss them with other people.

Inheritance – Extending Existing Applications

[55]

We will do this with a new module to extend the previously created To-Do app and add
these new features using the inheritance mechanisms. Here is what we expect to achieve by
the end of this chapter:

This will be our work plan for the feature extensions to be implemented:

Extend the Task model, such as the user who is responsible for the task
Modify the business logic to operate only on the current user's tasks, instead of all
the tasks the user is able to see
Extend the views to add the necessary fields to the views
Add social networking features: a message wall and the followers

Inheritance – Extending Existing Applications

[56]

We will start creating the basic skeleton for a new module alongside the
 module. Following the installation example in , Getting Started with

Odoo Development, we are hosting our modules at . We
should add there a new directory for the module, containing an empty

 file.

Now create , containing this code:

We haven't done this here, but including the and keys can be important
when publishing modules to the Odoo online app store.

Notice that we added the explicit dependency on module. This is necessary and
important for the inheritance mechanism to work properly. And from now on, when the

 module is updated, all modules depending on it, such as module,
will also be updated.

Next, install it. It should be enough to update the module list using the Update Apps List
menu option under Apps; find the new module in the Apps list and click on its Install
button. Note that this time you will need to remove the default Apps filter in order to see
the new module in the list, since it is not flagged as being an application. For more detailed
instructions on discovering and installing a module, refer to , Getting Started with
Odoo Development.

Now, let's start adding new features to it.

Extending models
New models are defined through Python classes. Extending them is also done through
Python classes, but with the help of an Odoo-specific inheritance mechanism.

To extend an existing model, we use a Python class with a attribute. This
identifies the model to be extended. The new class inherits all the features of the parent
Odoo model, and we only need to declare the modifications we want to introduce.

Inheritance – Extending Existing Applications

[57]

In fact, Odoo models exist outside our particular Python module, in a central registry. This
registry, can be accessed from model methods using . For
example, to get a reference to the object representing the model, we would
write .

To modify an Odoo model, we get a reference to its registry class and then perform in-place
changes on it. This means that these modifications will also be available everywhere else
where this new model is used.

During the Odoo server startup, the module loading the sequence is relevant: modifications
made by one add-on module will only be visible to the add-on modules loaded afterward.
So it's important for the module dependencies to be correctly set, ensuring that the modules
providing the models we use are included in our dependency tree.

Adding fields to a model
We will extend the model to add a couple of fields to it: the user responsible for
the task and a deadline date.

The coding style guidelines recommended having a subdirectory with one file per
Odoo model. So we should start by creating the model subdirectory, making it Python-
importable.

Edit the file to have this content:

Create with the following code:

Inheritance – Extending Existing Applications

[58]

The preceding line directs Python to look for a file called in the same
directory and imports it. You would usually have a line for each Python file in the
directory:

Now create the file to extend the original model:

The class name is local to this Python file and, in general, is irrelevant for other
modules. The class attribute is the key here: it tells Odoo that this class is
inheriting and thus modifying the model.

Notice the attribute is absent. It is not needed because it is already
inherited from the parent model.

The next two lines are regular field declarations. The field represents a user from
the users model . It's a field, which is equivalent to a foreign key in
database jargon. The is a simple date field. In , Models
Structuring the Application Data, we will explain the types of fields available in Odoo in more
detail.

To have the new fields added to the model's supporting database table, we need to perform
a module upgrade. If everything goes as expected, you should see the new fields when
inspecting the model in the Technical | Database Structure | Models menu
option.

Modifying existing fields
As you can see, adding new fields to an existing model is quite straightforward. Since Odoo
8, modifying the attributes on existing inherited fields is also possible. It's done by adding a
field with the same name and setting values only for the attributes to be changed.

Inheritance – Extending Existing Applications

[59]

For example, to add a help tooltip to the field, we would add this line to
, described previously:

This modifies the field with the specified attributes, leaving unmodified all the other
attributes not explicitly used here. If we upgrade the module, go to a to-do task form and
pause the mouse pointer over the Description field; the tooltip text will be displayed.

Modifying model methods
Inheritance also works at the business logic level. Adding new methods is simple: just
declare their functions inside the inheriting class.

To extend or change the existing logic, the corresponding method can be overridden by
declaring a method with the exact same name. The new method will replace the previous
one, and it can also just extend the code of the inherited class, using Python's
method to call the parent method. It can then add new logic around the original logic both
before and after method is called.

It's best to avoid changing the method's function signature (that is, keep
the same arguments) to be sure that the existing calls on it will keep
working properly. In case you need to add additional parameters, make
them optional keyword arguments (with a default value).

The original Clear All Done action is not appropriate for our task-sharing module anymore
since it clears all the tasks, regardless of their user. We need to modify it so that it clears
only the current user tasks.

For this, we will override (or replace) the original method with a new version that first finds
the list of completed tasks for the current user and then inactivates them:

For clarity, we first build the filter expression to be used to find the records to be cleared.

Inheritance – Extending Existing Applications

[60]

This filter expression follows an Odoo-specific syntax referred to as : it is a list of
conditions, where each condition is a tuple.

These conditions are implicitly joined with the AND () operator. For the OR operation, a
pipe, , is used in the place of a tuple, and it joins the next two conditions. We will go into
more details about domains in , Views Designing the User Interface.

The domain used here filters all the done tasks () that either have
the current user as responsible () or don't have a current
user set ().

We then use the method to get a recordset with the done records to act upon and,
finally, do a bulk write on them setting the field to . The Python value
here represents the database value.

In this case, we completely overwrote the parent method, replacing it with a new
implementation, but that is not what we usually want to do. Instead, we should extend the
existing logic with some additional operations. Otherwise, we might break the already
existing features.

To have the overriding method keep the already existing logic, we use Python's
construct to call the parent's version of the method. Let's see an example of this.

We can improve the method so that it only performs its action on the
tasks assigned to the current user. This is the code to achieve that:

Inheritance – Extending Existing Applications

[61]

The method in the inheriting class starts with a loop to check that none of the tasks to
toggle belongs to another user. If these checks pass, it then goes on calling the parent class
method, using . If not an error is raised, and we should use for this the Odoo built-
in exceptions. The most relevant are , used here, and .

These are the basic techniques for overriding and extending business logic defined in model
classes. Next, we will see how to extend the user interface views.

Extending views
Forms, lists, and search views are defined using the XML structures. To extend views,
we need a way to modify this XML. This means locating XML elements and then
introducing modifications at those points.

Inherited views allow just that. An inherited view declaration looks like this:

The field identifies the view to be extended by referring to its external
identifier using the special attribute. External identifiers will be discussed in more
detail in , Module Data.

Being XML, the best way to locate elements in XML is to use XPath expressions. For
example, taking the form view defined in the previous chapter, one XPath expression to
locate the element is . This
expression finds any element with a attribute that is equal to . You can
find more information on XPath at

.

If an XPath expression matches multiple elements, only the first one will be modified. So
they should be made as specific as possible, using unique attributes. Using the
attribute is the easiest way to ensure we find the exact elements we want to use an extension
point. Thus, it is important to set them on our view XML elements.

Inheritance – Extending Existing Applications

[62]

Once the extension point is located, you can either modify it or have XML elements added
near it. As a practical example, to add the field before the field,
we would write the following in :

Fortunately, Odoo provides shortcut notation for this, so most of the time we can avoid the
XPath syntax entirely. Instead of the preceding XPath element, we can just use information
related to the type of element type to locate and its distinctive attributes, and instead of the
preceding XPath, we write this:

Just be aware that if the field appears more than once in the same view, you should always
use the XPath syntax. This is because Odoo will stop at the first occurrence of the field and
it may apply your changes to the wrong field.

Often, we want to add new fields next to the existing ones, so the tag will be used
as the locator frequently. But any other tag can be used: , , , and so
on. The attribute is usually the best choice for matching elements, but sometimes, we
may need to use something else: the CSS element, for example. Odoo will find the
first element that has at least all the attributes specified.

Before version 9.0, the attribute (for the displayed label text) could
also be used as an extension locator. Since 9.0, this is not allowed anymore.
This limitation is related to the language translation mechanism operating
on those strings.

The attribute used with the locator element is optional and can have the
following values:

 adds the content to the parent element, after the matched node.
 adds the content, before the matched node.
 (default value) appended the content inside matched node.

Inheritance – Extending Existing Applications

[63]

 replaces the matched node. If used with empty content, it deletes an
element. Since Odoo 10 it also allows to wrap an element with other markup, by
using $0 in the content to represent the element being replaced.

 modifies the XML attributes of the matched element. This is done
using in the element content elements with
the new attribute values to set.

For Example, in the Task form, we have the field, but having it visible is not that
useful. We could hide it from the user. This can be done by setting its attribute:

Setting the attribute to hide an element is a good alternative to using the
 locator to remove nodes. Removing nodes should be avoided since it can break

depending modules that may be depending on the deleted node as a placeholder to add
other elements.

Extending the form view
Putting together all the previous form elements, we can add the new fields and hide the

 field. The complete inheritance view to extend the to-do tasks form is this:

<field name="arch" type="xml">
 <field name="name" position="after">
 <field name="user_id">
 </field>
 <field name="is_done" position="before">
 <field name="date_deadline" />
 </field>
 <field name="active" position="attributes">
 <attribute name="invisible">1</attribute>
 </field>
 </field>

Inheritance – Extending Existing Applications

[64]

This should be added to a file in our module, inside the
 element, as shown in the previous chapter.

Inherited views can also be inherited, but since this creates more intricate
dependencies, it should be avoided. You should prefer to inherit from the
original view whenever possible.

Also, we should not forget to add the attribute to the descriptor
file:

Extending the tree and search views
Tree and search view extensions are also defined using the XML structure, and they
can be extended in the same way as form views. We will continue our example by
extending the list and search views.

For the list view, we want to add the field to it:

<field name="inherit_id"
 ref="todo_app.view_tree_todo_task"/>

 <field name="name" position="after">
 <field name="user_id" />
 </field>

For the search view, we will add the search by the user and predefined filters for the user's
own tasks and the tasks not assigned to anyone:

 <field name="inherit_id"
 ref="todo_app.view_filter_todo_task"/>

Inheritance – Extending Existing Applications

[65]

<field name="name" position="after">
 <field name="user_id" />
 <filter name="filter_my_tasks" string="My Tasks"
 domain="[('user_id','in',[uid,False])]" />
 <filter name="filter_not_assigned" string="Not
 Assigned" domain="[('user_id','=',False)]" />
 </field>

Don't worry too much about the specific syntax for these views. We'll cover them in more
detail in , Views Designing the User Interface.

More model inheritance mechanisms
We have seen the basic extension of models, called class inheritance in the official
documentation. This is the most frequent use of inheritance, and it's easiest to think about it
as in-place extension. You take a model and extend it. As you add new features, they are
added to the existing model. A new model isn't created. We can also inherit from multiple
parent models, setting a list of values to the attribute. With this, we can make use
of mixin classes. Mixin classes are models that implement generic features we can add to
other models. They are not expected to be used directly, and are like a container of features
ready to be added to other models.

If we also use the attribute with a value different from the parent model, we get a
new model reusing the features from the inherited one but with its own database table and
data. The official documentation calls this prototype inheritance. Here you take a model
and create a brand new one that is a copy of the old one. As you add new features, they are
added to the new model. The existing model isn't changed.

There is also the delegation inheritance method, using the attribute. It allows a
model to contain other models in a transparent way for the observer while, behind the
scenes, each model handles its own data. You take a model and extend it. As you add new
features, they are added to the new model. The existing module isn't changed. Records in
the new model have a link to a record in the original model, and the fields of the original
model are exposed and can be used directly in the new model.

Let's explore these possibilities in more detail.

Inheritance – Extending Existing Applications

[66]

Copying features with prototype inheritance
The method we used before to extend a model used just the attribute. We
defined a class inheriting the model and added some features to it. The class
attribute was not explicitly set; implicitly, it was .

However, using the attribute allows us to create a new model copying the features
from the inherited ones. Here is an example:

This extends the model by copying into it the features from the
model. The model implements the Odoo messages and followers features
and is reusable so that it's easy to add those features to any model.

Copying means that the inherited methods and fields will also be available in the inheriting
model. For fields, this means that they will also be created and stored in the target model's
database tables. The data records of the original (inherited) and the new (inheriting) models
are kept unrelated. Only the definitions are shared.

In a moment, we will discuss in detail how to use this to add and its social
networking features to our module. In practice, when using mixins, we rarely inherit from
regular models because this causes duplication of the same data structures.

Odoo also provides the delegation inheritance mechanism that avoids data structure
duplication, so it is usually preferred when inheriting from regular models. Let's look at it
in more detail.

Embedding models using delegation inheritance
Delegation inheritance is less frequently used, but it can provide very convenient solutions.
It is used through the attribute (note the additional) with dictionary mapping
inherited models with fields linking to them.

Inheritance – Extending Existing Applications

[67]

A good example of this is the standard user's model, ; it has a Partner model
embedded in it:

With delegation inheritance, the model embeds the inherited model
 so that when a new class is created, a partner is also created and a

reference to it is kept in the field of the class. It has some similarities
with the polymorphism concept in object-oriented programming.

Through the delegation mechanism, all fields from the inherited model and Partner are
available as if they were fields. For example, the Partner and fields are
exposed as fields, but in fact, they are being stored in the linked Partner model, and
no data duplication occurs.

The advantage of this, compared to prototype inheritance, is that there is no need to repeat
data structures, such as addresses, across several tables. Any new model that needs to
include an address can delegate that to an embedded Partner model. And if modifications
are introduced in Partner address fields, these are immediately available to all the models
embedding it!

Note that with delegation inheritance, fields are inherited, but methods are
not.

Adding the social network features
The social network module (technical name) provides the message board found at the
bottom of many forms and the Followers feature, as well as the logic regarding messages
and notifications. This is something we will often want to add to our models, so let's learn
how to do it.

Inheritance – Extending Existing Applications

[68]

The social network messaging features are provided by the model of the
 module. To add it to a custom model, we need to do the following:

Have the module depend on
Have the class inherit from
Have the followers and thread widgets added to the form view
Optionally, we need to set up record rules for followers.

Let's follow this checklist.

Regarding the first point, our extension module will need the additional dependency
on the module manifest file:

Regarding the second point, the inheritance on is done using the
attribute we used before. But our to-do task extension class is already using the
attribute. Fortunately, it can accept a list of models to inherit from, so we can use this to
make it also include the inheritance on :

The is an abstract model. Abstract models are just like regular models,
except that they don't have a database representation; no actual tables are created for them.
Abstract models are not meant to be used directly. Instead, they are expected to be used as
mixin classes, as we just did. We can think of them as templates with ready-to-use features.
To create an abstract class, we just need it to use instead of

 for the class defining them.

For the third point, we want to add the social network widgets at the bottom of the form.
This is done by extending the form view definition. We can reuse the inherited view we
already created, , and add this to its data:

The two fields added here haven't been explicitly declared by us, but they are provided by
the model.

Inheritance – Extending Existing Applications

[69]

The final step, that is step four, is to set up record rules for followers: row-level access
control. This is only needed if our model is required to limit other users from accessing the
records. In this case, we want each to-do task record to also be visible to any of its followers.

We already have a Record Rules defined on the to-do task model, so we need to modify it to
add this new requirement. That's one of the things we will be doing in the next section.

Modifying data
Unlike views, regular data records don't have an XML structure and can't be extended
using XPath expressions. But they can still be modified replacing the values in their fields.

The data loading elements actually perform an or
 operation on the model : if model does not exist, it is created; otherwise, it is

updated/written over.

Since records in other modules can be accessed using a global
identifier, it's possible for our module to overwrite something that was written before by
another module.

Note that since the dot is reserved to separate the module name from the
object identifier, it can't be used in identifier names. Instead, use the
underscore option.

Modifying menu and action records
As an example, let's change the menu option created by the module to

. For this, we can add the following to the file:

Inheritance – Extending Existing Applications

[70]

We can also modify the action used in the menu item. Actions have an optional context
attribute. It can provide default values for view fields and filters. We will use it to have
enabled by default the My Tasks filter, defined earlier in this chapter:

Modifying security record rules
The To-Do application included a record rule to ensure that each task would only be visible
to the user that created it. But now, with the addition of social features, we need the task
followers to also access them. The social network module does not handle this by itself.

Also, now tasks can have users assigned to them, so it makes more sense to have the access
rules to work on the responsible user instead of the user who created the task.

The plan would be the same as we did for the menu item: overwrite
 to modify the field to a new value.

The convention is to keep security-related files in a subdirectory, so we will
create a file with the following content:

Inheritance – Extending Existing Applications

[71]

This overwrites the record rule from the module.
The new domain filter now makes a task visible to the responsible user, , or to
everyone if the responsible user is not set (equals); it is visible to all the task
followers as well.

The record rule runs in a context where a variable is available and represents the
record for the current session user. Since Followers are partners, not , instead of

, we need to use .

The groups field is a to-many relation. Editing data in these fields uses a special notation.
The code used here is to append to the list of related records. Also used often is code , to
instead completely replace the related records with a new list. We well discuss this notation
in more detail in , Module Data.

The attribute of the record element means that this record data will only be
written on installation actions and will be ignored on module upgrades. This allows for it to
be customization, without taking those risk of overwriting customizations and losing them
when doing an module upgrade sometime in the future.

Working on data files with at development time
can be tricky because later edits on the XML definition will be ignored on
module upgrades. To avoid this, you can instead reinstall the module.
This is easier done through the command line using the

As usual, we must not forget to add the new file to data attribute in the the
:

Inheritance – Extending Existing Applications

[72]

Summary
You should now be able to create your own modules by extending the existing ones.

To demonstrate how to do this, we extended the To-Do module we created in the previous
chapter, adding new features to the several layers that make up an application.

We extended an Odoo model to add new fields and extended its business logic methods.
Next, we modified the views to make the new fields available to them. Finally, we learned
how to inherit features from other models and use them to add the social network features
to the To-Do app.

The first three chapters gave us an overview of the common activities involved in Odoo
development, from Odoo installation and setup to module creation and extension.

The next chapters will each focus on a specific area of Odoo development, most of which we
briefly visited in these first chapters. In the following chapter, we will address data
serialization and the usage of XML and CSV data files in more detail.

44
Module Data

Most Odoo module definitions, such as user interfaces and security rules, are actually data
records stored in specific database tables. The XML and CSV files found in modules are not
used by Odoo applications at runtime. They are instead a means to load those definitions
into the database tables.

Because of this, an important part of Odoo modules is about representing (serializing) that
data using files so that can be later loaded into a database.

Modules can also have default and demonstration data. Data representation allows adding
that to our modules. Additionally, understanding Odoo data representation formats is
important in order to export and import business data in the context of a project
implementation.

Before we go into practical cases, we will first explore the external identifier concept, which
is the key to Odoo data representation.

Understanding external identifiers
An external identifier (also called XML ID) is a human-readable string identifier that
uniquely identifies a particular record in Odoo. They are important when loading data into
Odoo.

One reason for that is when upgrading a module, its data files will be loaded again into the
database, and we need to detect the already existing records, in order to update them
instead of creating new duplicate records.

Another reason supporting interrelated data: data records must be able to reference other
data records. The actual database identifier is a sequential number automatically assigned
by the database, during module installation. The external identifiers provides a way to

Module Data

[74]

reference a related record without the need to know beforehand what database ID it will be
assigned, allowing us to define data relations in Odoo data files.

Odoo takes care of translating the external identifier names into actual database IDs
assigned to them. The mechanism behind this is quite simple: Odoo keeps a table with the
mapping between the named external identifiers and their corresponding numeric database
IDs: the model.

To inspect the existing mappings, go to the Technical section of the Settings top menu and
select the External Identifiers menu item under Sequences & Identifiers.

For example, if we visit the External Identifiers list and filter it by the module,
we will see the external identifiers generated by the module created previously:

We can see that the external identifiers have a Complete ID label. Notice how it is
composed of the module name and the identifier name joined by a dot, for example,

.

External identifiers need to be unique only inside an Odoo module, so that there is no risk
of two modules conflicting because they accidentally chose the same identifier name. To
build a global unique identifier Odoo joins together the modules name with the actual
external identifier name. This is what you can see in the Complete ID field.

Module Data

[75]

When using an external identifier in a data file, you can choose to use either the complete
identifier or just the external identifier name. Usually it's simpler to just use the external
identifier name, but the complete identifier enables us to reference data records from other
modules. When doing so, make sure that those modules are included in the module
dependencies, to ensure that those records are loaded before ours.

At the top of the list, we have the complete identifier. This
is the menu action we created for the module, which is also referenced in the corresponding
menu item. By clicking on it, we go to the form view with its details; the

 external identifier in the module maps to a specific record
ID in the model, in this case:

Besides providing a way for records to easily reference other records, external identifiers
also allow you to avoid data duplication on repeated imports. If the external identifier is
already present, the existing record will be updated; you'd not need to create a new record.
This is why on subsequent module upgrades, previously loaded records are updated
instead of being duplicated.

Module Data

[76]

Finding external identifiers
When preparing definition and demonstration data files for the modules, we frequently
need to look up existing external identifiers that are needed for references.

We can use the External Identifiers menu shown earlier, but the Developer menu can
provide a more convenient method for this. As you may recall from , Getting
Started with Odoo Development, the Developer menu is activated in the Settings dashboard,
in an option at the bottom-right.

To find the external identifier for a data record, on the corresponding form view, select the
View Metadata option from the Developer menu. This will display a dialog with the
record's database ID and external identifier (also known as XML ID).

As an example, to look up the user ID, we can navigate to form view, at Settings |
Users and select the View Metadata option, and this will be shown:

Module Data

[77]

To find the external identifier for view elements, such as form, tree, search, or action, the
Developer menu is also a good source of help. For this, we can either use its Manage Views
option or open the information for the desired view using the Edit <view type> option.
Then, select their View Metadata option.

Exporting and importing data
We will start exploring how data exporting and importing work from Odoo's user interface,
and from there, we will move on to the more technical details on how to use the data files in
our addon modules.

Exporting data
Data exporting is a standard feature available in any list view. To use it, we must first pick
the rows to export by selecting the corresponding checkboxes on the far left and then select
the Export option from the More button.

Here is an example, using the recently created to-do tasks:

We can also tick the checkbox in the header of the column. It will check all the records at
once, and will export all the records that match the current search criteria.

In previous Odoo versions, only the records seen on the screen (the
current page) would actually be exported. Since Odoo 9, this was changed
and ticked checkbox in the header will export all records that match the
current filter, not just the ones currently displayed. This is very useful to
export large sets of records that do not fit on the screen.

Module Data

[78]

The Export option takes us to a dialog form, where we can choose what to export. The
Import-Compatible Export option makes sure that the exported file can be imported back
to Odoo. We will need to use this.

The export format can be either CSV or Excel. We will prefer a CSV file to get a better
understanding of the export format. Next, we pick the columns we want to export and click
on the Export To File button. This will start the download of a file with the exported data:

If we follow these instructions and select the fields shown in the preceding screenshot, we
should end up with a CSV text file similar to this:

Module Data

[79]

Notice that Odoo automatically exported an additional column. This is
an external identifier assigned to each record. If none is already assigned,
a new one is automatically generated using in place of an
actual module name. New identifiers are only assigned to records that
don't already have one, and from there on, they are kept bound to the
same record. This means that subsequent exports will preserve the same
external identifiers.

Importing data
First we have to make sure the import feature is enabled. Since Odoo 9 it is enabled by
default. If not, the option is available from the Settings top menu, General Settings option.
Under the Import | Export section there is a Allow users to import data from
CSV/XLS/XLSX/ODS files checkbox that should be enabled.

This feature is provided by the Initial Setup Tools addon (is
the technical name). The actual effect of the Allow users to import
checkbox is to install or uninstall .

With this option enabled list views show an Import option next to the Create button at the
top of the list.

Let's perform a bulk edit on our to-do data first. Open the CSV file we just downloaded in a
spreadsheet or a text editor and change a few values. Also, add some new rows, leaving the

 column blank.

As mentioned before, the first column, , provides a unique identifier for each row. This
allows already existing records to be updated instead of duplicating them when we import
the data back to Odoo. For new rows added to the CSV file, we can choose to either provide
an external identifier of our choice, or to leave blank the column, a new record will be
created for them.

After saving the changes to the CSV file, click on the Import option (next to the Create
button) and we will be presented with the import assistant.

Module Data

[80]

There, we should select the CSV file location on the disk and click on Validate to check its
format for correctness. Since the file to import is based on an Odoo export, chances are that
it will be valid:

Now we can click on Import, and there you go; our modifications and new records should
have been loaded into Odoo.

Related records in CSV data files
In the preceding example, the user responsible for each task is a related record in the users
model, with a many-to-one (or a foreign key) relation. The column name used for it was

 and the field values were external identifiers for the related records, such as
 for the administrator user.

Using database IDs is only recommended if you are exporting and
importing from/to the same database. Usually you will prefer to use
external identifiers.

Module Data

[81]

Relation columns should have appended to their name if using external identifiers or
 if using database (numeric) IDs. Alternatively, a colon () can be used in place of a

slash for the same effect.

Similarly, many-to-many relations are also supported. An example of a many-to-many
relation is the one between users and groups: each user can be in many groups, and each
group can have many users. The column name for this type of field should have
 appended. The field values accept a comma-separated list of external identifiers,
surrounded by double quotes.

For example, the to-do task followers have a many-to-many relation between to-do tasks
and partners. Its column name should be , and a field value with two
followers could look like this:

Finally, one-to-many relations can also be imported through a CSV. The typical example for
this type of relation is a document head with several lines. Notice that a one-to-many relation
is always the inverse of a many-to-one relations. Each document head can have many lines.
And inversely every line has one head.

We can see an example of such a relation in the company model (the form view is available
in the Settings menu): each company can have several bank accounts, each with its own
details; inversely, each bank account record belongs to and has a many-to-one relation with
only one company.

We can import companies along with their bank accounts in a single file. Here is an
example where we load a company with three banks:

We can see that the first two columns, and , have values in the first line and are
empty in the next two lines. They have data for the record, which is the company.

The other three columns are all prefixed with and have values on all three lines.
They have data for the three related lines for the company's bank accounts. The first line has
data of both the company and the first bank, and the next two lines have data only for the
additional company and banks.

Module Data

[82]

These are essentials while working with export and import from the GUI. It is useful to set
up data in new Odoo instances or to prepare data files to be included in Odoo modules.
Next, we will learn more about using data files in modules.

Module data
Modules use data files to load their configurations into the database, default data, and
demonstration data. This can be done using both CSV and XML files. For completeness, the
YAML file format can also be used, but it is very rare for it to be used to load data;
therefore, we won't be discussing it.

CSV files used by modules are exactly the same as those we have seen and used for the
import feature. When using them in modules, one additional restriction is that the filename
must match the name of the model to which the data will be loaded so the system can infer
the model into which the data should be imported.

A common usage of data CSV files is for accessing security definitions, loaded into the
 model. They usually use CSV files that are named

.

Demonstration data
Odoo addon modules may install demonstration data, and it is considered good practice to
do so. This is useful to provide usage examples for a module and datasets to be used in
tests. Demonstration data for a module is declared using the attribute of the

 manifest file. Just like the attribute, it is a list of filenames with the
corresponding relative paths inside the module.

It's time to add some demonstration data to our module. We can start by
exporting some data from the to-do tasks, as explained in the previous section. The
convention is to place data files in a subdirectory. So we should save these data files
in the addon module as . Since this data will be owned
by our module, we should edit the values to remove the prefix in the
identifiers.

As an example, our data file might look like this:

Module Data

[83]

We must not forget to add this data file to the manifest attribute:

Next time we update the module, as long as it is installed with demo data enabled, the
content of the file will be imported. Note that this data will be reimported whenever a
module upgrade is performed.

XML files are also used to load module data. Let's learn more about what XML data files
can do that CSV files can't.

XML data files
While CSV files provide a simple and compact format to represent data, XML files are more
powerful and give more control over the loading process. Their filenames are not required
to match the model to be loaded. This is because the XML format is much richer and that
information is provided by the XML elements inside the file.

We already used XML data files in the previous chapters. The user interface components,
such as views and menu items, are in fact records stored in system models. The XML files in
the modules are the means used to load these records into the server.

To showcase this, we will add a second data file to the module,
, with the following content:

This XML is equivalent to the CSV data file we just saw in the previous section.

XML data files have a top element, inside of which we can have several
elements that correspond to the CSV data rows.

Module Data

[84]

The top element in data files was introduced in version 9.0 and
replaces the former tag. The section inside the top
element is still supported, but it's now optional. In fact, now and

 are equivalent, so we could use either one as top elements for our
XML data files.

A element has two mandatory attributes, namely and (the external
identifier for the record), and contains a tag for each field to write on.

Note that the slash notation in field names is not available here; we can't use
. Instead, the special attribute is used to reference

external identifiers. We'll discuss the values of the relational to-many fields in a moment.

The data noupdate attribute
When data loading is repeated, records loaded from the previous run are rewritten. It is
important to keep in mind that this means that upgrading a module will overwrite any
manual changes that might have been made inside the database. Notably, if views were
modified with customizations, then these changes will be lost with the next module
upgrade. The correct procedure is to instead create inherited views for the changes we need,
as discussed in , Inheritance Extending Existing Applications.

This re-import behavior is default, but it can be changed, so that when an module is
upgraded, some data file records are left untouched. This is done by the
attribute of the or element. These records will be created when the addon
module is installed, but in subsequent module upgrades nothing will be done to them.

This allows you to ensure that manually made customizations are kept safe from module
upgrades. It is often used with record access rules, allowing them to be adapted to
implementation-specific needs.

It is possible to have more than one section in the same XML file. We can take
advantage of this to separate data to import only one, with , and data to be
re-imported on each upgrade, with .

Module Data

[85]

The flag is stored in the External Identifier information for each record. It's
possible to manually edit it directly using the External Identifier form available in the
Technical menu, using the Non Updatable checkbox.

The attribute can be tricky when developing modules, because
changes made to the data later will be ignored. A solution is to, instead of
upgrading the module with the option, reinstall it using the option.
Reinstalling from the command line using the option ignores the

 flags on data records.

Defining records in XML
Each element has two basic attributes, and , and contains
elements that assign values to each column. As mentioned before, the attribute
corresponds to the record's external identifier and the attribute to the target model
where the record will be written. The elements have a few different ways to assign
values. Let's look at them in detail.

Setting field values
The element defines a data record and contains elements to set values
on each field.

The attribute of the element identifies the field to be written.

The value to write is the element content: the text between the field's opening and closing
tag. For dates and datetimes, strings with and
will be converted properly. But for Boolean fields any non-empty value will be converted as

, and the and values are converted to .

The way Boolean values are read from data files is improved in
Odoo 10. In previous versions, any non-empty values, including and

 were converted to . For Booleans using the attribute
discussed next was recommended.

Module Data

[86]

Setting values using expressions
A more elaborate alternative to define a field value is the attribute. It evaluates a
Python expression and assigns the resulting value to the field.

The expression is evaluated in a context that, besides Python built-ins, also has some
additional identifiers available. Let's have a look at them.

To handle dates, the following modules are available: , , , and
. They allow you to calculate date values, something that is frequently used

in demonstration and test data, so that the dates used are close to the module installation
date. For example, to set a value to yesterday, we will use this:

Also available in the evaluation context is the function, which is used to translate an
external identifier into the corresponding database ID. This can be used to set values for
relational fields. As an example, we have used it before to set the value for :

Setting values for relation fields
We have just seen how to set a value on a many-to-one relation field, such as ,
using the attribute with a function. But there is a simpler way.

The element also has a attribute to set the value for a many-to-one field, using
an external identifier. With this, we can set the value for using just this:

For one-to-many and many-to-many fields, a list of related IDs is expected, so a different
syntax is needed; Odoo provides a special syntax to write on this type of fields.

Module Data

[87]

The following example, taken from the official Fleet app, replaces the list of related records
of a field:

To write on a to-many field, we use a list of triples. Each triple is a write command that does
different things according to the code used:

 creates a new record and links it to this one
 updates the values on an already linked record

 unlinks and deletes a related record
 unlinks but does not delete a related record
 links an already existing record

 unlinks but does not delete all the linked records
 replaces the list of linked records with the provided list

The underscore symbol used in the preceding list represents irrelevant values, usually filled
with or .

Shortcuts for frequently used models
If we go back to , Building Your First Odoo Application, we will find elements other
than , such as and , in the XML files.

These are convenient shortcuts for frequently used models that can also be loaded using
regular elements. They load data into base models supporting the user interface
and will be explored in more detail later, specifically in , Views Designing the
User Interface.

Module Data

[88]

For reference, the following shortcut elements are available with the corresponding models
they load data into:

 is the window action model,
 is the menu items model,

 is the report action model,
 is for QWeb templates stored in the model

 is the URL action model,

Other actions in XML data files
Until now, we have seen how to add or update data using XML files. But XML files also
allow you to perform other types of actions that are sometimes needed to set up data. In
particular, they can delete data, execute arbitrary model methods, and trigger workflow
events.

Deleting records
To delete a data record, we use the element, providing it with either an ID or a
search domain to find the target record. For example, using a search domain to find the
record to delete looks like this:

Since in this case we know the specific ID to delete, we could have used it directly for the
same effect:

Module Data

[89]

Triggering functions and workflows
An XML file can also execute methods during its load process through the
element. This can be used to set up demo and test data. For example, the CRM app uses it to
set up demonstration data:

This calls the method of the model, passing two arguments
through the attribute. The first is the list of IDs to work on, and the next is the context
to use.

Another way XML data files can perform actions is by triggering Odoo workflows through
the element. Workflows can, for example, change the state of a sales order or
convert it into an invoice. The app no longer uses workflows, but this example can
still be found in the demo data:

The attribute is self-explanatory by now, and identifies the workflow instance
we are acting upon. The is the workflow signal sent to this workflow instance.

Summary
You have learned all the essentials about data serialization and gained a better
understanding of the XML aspects we saw in the previous chapters. We also spent some
time understanding external identifiers, a central concept of data handling in general and
module configurations in particular. XML data files were explained in detail. You learned
about the several options available to set values on fields and also to perform actions, such
as deleting records and calling model methods. CSV files and the data import/export
features were also explained. These are valuable tools for Odoo's initial setup or for mass
editing of data.

In the next chapter, we will explore how to build Odoo models in detail and learn more
about building their user interfaces.

55
Models – Structuring the

Application Data
In the previous chapters, we had an end-to-end overview of creating new modules for
Odoo. In , Building Your First Odoo Application, we built a completely new
application, and in , Inheritance Extending Existing Applications, we explored
inheritance and how to use it to create an extension module for our application. In

, Module Data, we discussed how to add initial and demonstration data to our modules.

In these overviews, we touched upon all the layers involved in building a backend
application for Odoo. Now, in the following chapters, it's time to explain these several
layers that make up an application in more detail: models, views, and business logic.

In this chapter, you will learn how to design the data structures that support an application
and how to represent the relationships between them.

Organizing application features into
modules
As before, we will use an example to help explain the concepts.

Odoo's inheritance features provide an effective extensibility mechanism. It allows you to
extend existing third-party apps without changing them directly. This composability also
enables a module-oriented development pattern, where large apps can be split into smaller
features, rich enough to stand on their own.

Models – Structuring the Application Data

[91]

This can be helpful to limit complexity, both at the technical level and the user experience
level. From a technical perspective, splitting a large problem into smaller parts makes it
easier to solve and is friendlier for incremental feature development. From the user
experience perspective, we can choose to activate only the features that are really needed
for them, for a simpler user interface. So we will be improving our To-Do application
through additional addon modules to finally form a fully featured application.

Introducing the todo_ui module
In the previous chapter, we first created an app for personal to-dos and then extended it so
that the to-dos could be shared with other people.

Now we want to take our app to the next level by improving its user interface, including a
kanban board. The kanban board is a simple workflow tool that organizes items in columns,
where these items flow from the left-hand column to the right, until they are completed. We
will organize our Tasks into columns, according to their Stages, such as Waiting, Ready,
Started, or Done.

We will start by adding the data structures to enable this vision. We need to add stages, and
it will be good to add support for tags as well, allowing the tasks to be categorized by
subject. In this chapter, we will focus on the data models only. The user interface for these
features will be discussed in , Views Designing the User Interface, and kanban
views in , QWeb and Kanban Views.

The first thing to figure out is how our data will be structured so that we can design the
supporting models. We already have the central entity: the To-do Task. Each task will be in
one Stage at a time, and tasks can also have one or more tags on them. We will need to add
these two additional models, and they will have these relationships:

Each task has a stage, and there can be many tasks in each stage
Each task can have many tags, and each tag can be attached to many tasks

This means that Tasks have many-to-one relationship with Stages, and many-to-many
relationships with Tags. On the other hand, the inverse relationships are: Stages have a one-
to-many relationship with Tasks and Tags have a many-to-many relationship with Tasks.

Models – Structuring the Application Data

[92]

We will start by creating the new module and add the To-do Stages and To-do
Tags models to it.

We've been using the directory to host our modules. We
should create a new directory inside it for the new addons. From the shell, we
could use the following commands:

$ cd ~/odoo-dev/custom-addons
$ mkdir todo_ui
$ cd todo_ui

We begin adding the manifest file, with this content:

We should also add a file. It is perfectly fine for it to be empty for now.

Now we can install the module in our Odoo work database and get started with the models.

Creating models
For the to-do tasks to have a kanban board, we need Stages. Stages are board columns, and
each task will fit into one of these columns:

Edit to import the submodule:1.

Create the directory and add to it an file with2.
this:

Models – Structuring the Application Data

[93]

Now let's add the Python code file:3.

Here we created the two new models that will be referenced in the to-do tasks.

Focusing on the task stages, we have a Python class, , based on the
class, which defines a new Odoo model called . We also have two fields:

 and . We can see some model attributes (prefixed with an underscore) that
are new to us. Let's have a closer look at them.

Model attributes
Model classes can use additional attributes that control some of their behaviors. These are
the most commonly used attributes:

 is the internal identifier for the Odoo model we are creating. Mandatory
when creating a new model.

 is a user friendly title for the model's records, shown when the
model is viewed in the user interface. Optional but recommended.

 sets the default order to use when the model's records are browsed, or
shown in a list view. It is a text string to be used as the SQL clause, so
it can be anything you could use there, although it has a smart behavior and
supports translatable and many-to-one field names.

Models – Structuring the Application Data

[94]

For completeness, there are a couple of more attributes that can be used in advanced cases:

 indicates the field to use as the record description when referenced
from related fields, such as a many-to-one relationship. By default, it uses the

 field, which is a commonly found field in models. But this attribute allows
us to use any other field for that purpose.

 is the name of the database table supporting the model. Usually, it is left
to be calculated automatically, and is the model name with the dots replaced by
underscores. But it's possible to set to indicate a specific table name.

We can also have the and attributes, as explained in ,
Inheritance Extending Existing Applications.

Models and Python classes
Odoo models are represented by Python classes. In the preceding code, we have a Python
class , based on the class, that defines a new Odoo model called

.

Odoo models are kept in a central registry, also referred to as in the older Odoo
versions. It is a dictionary that keeps references to all the model classes available in the
instance, and it can be referenced by a model name. Specifically, the code in a model
method can use to get a reference to a class representing the model .

You can see that model names are important since they are the keys used to access the
registry. The convention for model names is to use a list of lowercase words joined with
dots, such as . Other examples from the core modules are

, , or . We should use the singular
form model instead of . For historical reasons, it is possible to find
some core models that don't follow this, such as , but it is not the rule.

Model names must be globally unique. Because of this, the first word should correspond to
the main application the module relates to. In our example, it is . Other examples from
the core modules are , , or .

Models – Structuring the Application Data

[95]

Python classes, on the other hand, are local to the Python file where they are declared. The
identifier used for them is only significant for the code in that file. Because of this, class
identifiers are not required to be prefixed by the main application they relate to. For
example, there is no problem to name our class for the model.
There is no risk of collision with possible classes with the same name on other modules.

Two different conventions for class identifiers can be used: or .
Historically, Odoo code used the snake case, and it is still possible to find classes that use
this convention. But the trend is to use camel case, since it is the Python standard defined by
the PEP8 coding conventions. You may have noticed that we are using the latter form.

Transient and Abstract models
In the preceding code and in the vast majority of Odoo models, classes are based on the

 class. These type of models have permanent database persistence: database
tables are created for them and their records are stored until explicitly deleted.

But Odoo also provides two other model types to be used: Transient and Abstract models.

Transient models are based on the class and are used
for wizard-style user interaction. Their data is still stored in the database, but it is
expected to be temporary. A vacuum job periodically clears old data from these
tables. For example, the Load a Language dialog window, found in the Settings |
Translations menu, uses a Transient model to store user selections and
implement wizard logic.
Abstract models are based on the class and have no
data storage attached to them. They act as reusable feature sets to be mixed in
with other models, using the Odoo inheritance capabilities. For example,

 is an Abstract model, provided by the addon, used to
add message and follower features to other models.

Inspecting existing models
The models and fields created through the Python classes have their metadata available
through the user interface. In the Settings top menu, navigate to the Technical | Database
Structure | Models menu item. Here, you will find the list of all the models available in the
database. Clicking on a model in the list will open a form with its details:

Models – Structuring the Application Data

[96]

This is a good tool to inspect the structure of a model since in one place, you can see the
results of all the customizations from different modules. In this case, as you can see at the
top-right corner in the In Apps field, the definitions for this model come from
both the and modules.

In the lower area, we have some information tabs available: a quick reference for the
model's Fields, the Access Rights granted on security groups, and also list the Views
available for this model.

We can find the model's External Identifier using, from the Developer menu, the View
Metadata option. The model external identifiers, or XML IDs, are automatically generated
by the ORM but fairly predictable: for the model, the external identifier is

.

The Models form is editable! It's possible to create and modify models,
fields, and views from here. You can use this to build prototypes before
persisting them in modules.

Models – Structuring the Application Data

[97]

Creating fields
After creating a new model, the next step is to add fields to it. Odoo supports all the basic
data types expected, such as text strings, integers, floating point numbers, Booleans, dates,
datetimes, and image/binary data.

Some field names are special, wither because they are reserved by the ORM for special
purposes, or because some built-in features by default use some default field names.

Let's explore the several types of fields available in Odoo.

Basic field types
We now have a model and we will expand it to add some additional fields. We
should edit the file and add extra field definitions to
make it look like this:

Models – Structuring the Application Data

[98]

Here, we have a sample of the non-relational field types available in Odoo with the
positional arguments expected by each one.

In most cases, the first argument is the field title, corresponding to the field
argument; this is used as the default text for the user interface labels. It's optional, and if not
provided, a title will be automatically generated from the field name.

For date field names, there is a convention to use date as a prefix. For example, we should
use field instead of . Similar conventions also apply to
other fields, such as , , or .

These are the standard positional arguments expected by each of the field types:

 expects a second, optional, argument size, for the maximum text size. It's
recommended to not use it unless there is business requirement that requires it,
such as a social security number with a fixed length.

 differs from , in that, it can hold multiline text content, but expects the
same arguments.

 is a drop-down selection list. The first argument is the list of
selectable options and the second is the string title. The selection item is a list of

 tuples, for the value stored in the database and the
corresponding user interface description. When extending through inheritance,
the argument is available to append new items to an existing
selection list.

 is stored as a text field, but has specific handling on the user interface, for
HTML content presentation. For security reasons, they are sanitized by default,
but this behavior can be overridden.

 just expects a string argument for the field title.
 has a second optional argument, an tuple with the field's precision:

 is the total number of digits; of those, are decimal digits.
 and fields expect only the string text as a positional argument.

For historical reasons, the ORM handles their values in a string format. Helper
functions should be used to convert them to actual date objects. Also the datetime
values are stored in the database in UTC time but presented in local time, using
the user's time zone preferences. This is discussed in more detail in ,
Views Designing the User Interface.

Models – Structuring the Application Data

[99]

 holds or values, as you might expect, and only have one
positional argument for the string text.

 stores file-like binary data, and also expects only the string argument.
They can be handled by Python code using encoded strings.

Other than these, we also have the relational fields, which will be introduced later in this
chapter. But now, there is still more to learn about these field types and their attributes.

Common field attributes
Fields have attributes that can be set when defining them. Depending on the field type, a
few attributes can be passed positionally, without an argument keyword, as shown in the
previous section.

For example, could make use of positional arguments.
Using the keyword arguments, the same could be written as

. More information on keyword
arguments can be found in the Python official documentation at

.

All the available attributes can be passed as a keyword argument. These are the generally
available attributes and the corresponding argument keywords:

 is the field default label, to be used in the user interface. Except for
selection and relational fields, it is the first positional argument, so most of the
time it is not used as a keyword argument.

 sets a default value for the field. It can be a static value, such as a string,
or a callable reference, either a named function or an anonymous function (a
lambda expression).

 applies only to fields, and can set a maximum size allowed. Current
best practice is to not use it unless it's really needed.

 applies only to , , and fields, and makes the field
contents translatable, holding different values for different languages.

 provides the text for tooltips displayed to the users.
 makes the field by default not editable on the user interface.

This is not enforced at the API level; it is only a user interface setting.

Models – Structuring the Application Data

[100]

 makes the field by default mandatory in the user interface. This
is enforced at the database level by adding a constraint on the column.

 will create a database index on the field.
 has the field ignored when using the duplicate record feature,

 ORM method. The non-relational fields are by default.
 allows limiting the field's access and visibility to only some groups. It

expects a comma separated list of XML IDs for security groups, such as
.

 expects a dictionary mapping values for UI attributes depending on
values of the field. For example:

. Attributes that can be used are
, , and .

Note that the field attribute is equivalent to the attribute in
views. Note that views support a attribute, but it has a different
usage: it accepts a comma-separated list of states to control when the
element should be visible.

For completeness, two other attributes are sometimes used when upgrading between Odoo
major versions:

 logs a warning whenever the field is being used.

 is used when a field is renamed in a newer version, enabling
the data in the old field to be automatically copied into the new field.

Special field names
A few field names are reserved to be used by the ORM.

The field is an automatic number uniquely identifying each record, and used as the
database primary key. It's automatically added to every model.

Models – Structuring the Application Data

[101]

The following fields are automatically created on new models, unless the
 model attribute is set:

 is for the user that created the record
 is for the date and time when the record is created

 is for the last user to modify the record
 is for the last date and time when the record was modified

This information is available from the web client, navigating to the Developer Mode menu
and selecting the View Metadata option.

Some API built-in features by default expect specific field names. We should avoid using
these field names for purposes other than the intended ones. Some of them are even
reserved and can't be used for other purposes at all:

 is used by default as the display name for the record. Usually it is a ,
but can also be a or a field type. We can still set another field to
be used for display name, using the model attribute.

, of type , allows inactivating records. Records with
 will automatically be excluded from queries. To access them an

 condition must be added to the search domain, or
 should be added to the current context.

, of type , if present in a list view, allows to manually define
the order of the records. To work properly you should not forget to use it with
the model's attribute.

, of type , represents basic states of the record's life cycle, and
can be used by the state's field attribute to dynamically modify the view: some
form fields can be made , , or in specific record
states.

, , and , of type , have special
meaning for parent/child hierarchical relations. We will discuss them in detail in
the next section.

So far, we've discussed non-relational fields. But a good part of an application data
structure is about describing the relationships between entities. Let's look at that now.

Models – Structuring the Application Data

[102]

Relationships between models
Looking again at our module design, we have these relationships:

Each Task has a Stage. That's a many-to-one relationship, also known as a foreign
key. The inverse is a one-to-many relationship, meaning that each Stage can have
many Tasks.
Each Task can have many Tags. That's a many-to-many relationship. The inverse
relationship, of course, is also a many-to-many, since each Tag can be in many
Tasks.

The following Entity Relationship Diagram can help visualizing the relationships we are
about to create on the model. The lines ending with a triangle represent a many sides of the
relationships:

Let's add the corresponding relationship fields to the to-do tasks in our
file:

Models – Structuring the Application Data

[103]

The preceding code shows the basic syntax of these fields, setting the related model and the
field's title . The convention for relational field names is to append or to
the field names, for to-one and to-many relationships, respectively.

As an exercise, you may try to also add the corresponding inverse relationships to the
related models:

The inverse of the relationship is a field on Stages, since
each Stage can have many tasks. We should add this field to the Stage class.
The inverse of the relationship is also a field on Tags,
since each Tag can also be used on many Tasks.

Let's have a closer look at relational field definitions.

Many-to-one relationships
The relationship accepts two positional arguments: the related model
(corresponding to the keyword argument) and the title . It creates a field in
the database table with a foreign key to the related table.

Some additional named arguments are also available to use with this type of field:

 defines what happens when the related record is deleted. Its default is
, meaning that an empty value is set when the related record is deleted.

Other possible values are , raising an error preventing the deletion, and
 also deleting this record.
 is a dictionary of data, meaningful for the web client views, to carry

information when navigating through the relationship. For example, to set
default vales. It will be better explained in the , Views Designing the
User Interface.

 is a domain expression, a list of tuples, used filter the records available
for the relation field.

 allows the ORM to use SQL joins when doing searches using
this relationship. If used, the access security rules will be bypassed, and the user
could have access to related records the security rules wouldn't allow, but the
SQL queries will be more efficient and run faster.

Models – Structuring the Application Data

[104]

Many-to-many relationships
The minimal signature accepts one argument for the related model, and it is
recommended to also provide the argument with the field title.

At the database level, it does not add any columns to the existing tables. Instead, it
automatically creates a new relationship table that has only two ID fields with the foreign
keys for the related tables. The relationship table name and the field names are
automatically generated. The relationship table name is the two table names joined with an
underscore with appended to it.

On some occasions we may need to override these automatic defaults.

One such case is when the related models have long names, and the name for the
automatically generated relationship table is too long, exceeding the 63 characters
PostgreSQL limit. In these cases we need to manually choose a name for the relationship
table, to conform to the table name size limit.

Another case is when we need a second many-to-many relationship between the same
models. In these cases we need to manually provide a name for the relationship table, so
that it doesn't collide with the table name already being used for the first relationship.

There are two alternatives to manually override these values: either using positional
arguments or keyword arguments.

Using positional arguments for the field definition we have:

Note that the additional arguments are optional. We could just set the
name for the relationship table and let the field names use the automatic
defaults.

Models – Structuring the Application Data

[105]

We can instead use keyword arguments, which some people prefer for readability:

Just like many-to-one fields, many-to-many fields also support the and
keyword attributes.

There is currently a limitation in the ORM design, regarding Abstract
models, that when you force the names of the relationship table and
columns, they cannot be cleanly inherited anymore. So this should not be
done in Abstract models.

The inverse of the relationship is also a field. If we also add a
 field to the model, Odoo infers that this many-to-many relationship is the

inverse of the one in the model.

The inverse relationship between Tasks and Tags can be implemented like this:

Tag class relationship to Tasks:
 task_ids = fields.Many2many(
 'todo.task', # related model
 string='Tasks')

One-to-many inverse relationships
An inverse of a can be added to the other end of the relationship. This has no
impact on the actual database structure, but allows us easily browse from the one side of
the many related records. A typical use case is the relationship between a document header
and its lines.

Models – Structuring the Application Data

[106]

In our example, a inverse relationship on Stages allows us to easily list all the
Tasks in that Stage. The code to add this inverse relationship to Stages is:

 # Stage class relationship with Tasks:
 tasks = fields.One2many(
 'todo.task', # related model
 'stage_id', # field for "this" on related model
 'Tasks in this stage')

The accepts three positional arguments: the related model, the field name in that
model referring this record, and the title string. The first two positional arguments
correspond to the and keyword arguments.

The additional keyword parameters available are the same as for : ,
, (here acting on the many side of the relationship), and .

Hierarchic relationships
Parent-child tree relationships are represented using a relationship with the same
model, so that each record references its parent. And the inverse makes it easy
for a parent to keep track of its children.

Odoo provides improved support for these hierarchic data structures, for faster browsing
through tree siblings, and for easier search using the additional operator in
domain expressions.

To enable these features we need to set the flag attribute and add to the
model the helper fields: and . Mind that this additional
operation comes at storage and execution time penalties, so it's best used when you expect
to read more frequently than write, such as a the case of a category tree.

Models – Structuring the Application Data

[107]

Revisiting the model, defined in the file, we should now edit it to
look like this:

 _parent_store = True

 parent_id = fields.Many2one(
 'todo.task.tag', 'Parent Tag', ondelete='restrict')
 parent_left = fields.Integer('Parent Left', index=True)
 parent_right = fields.Integer('Parent Right', index=True)

Here, we have a basic model, with a field to reference the parent record, and the
 attribute to add hierarchic search support. When doing this,

the and fields must also be added.

The field referring to the parent is expected to be named , but any other field
name can be used as long as we declare that in the attribute.

Also, it is often convenient to add a field with the direct children of the record:

Reference fields using dynamic relationships
Regular relational fields reference one fixed comodel. The Reference field type does not
have this limitation and supports dynamic relationships, so that the same field is able to
refer to more than one model.

For example, we can use it to add a field to To-do Tasks, that can either refer to
a or a :

Models – Structuring the Application Data

[108]

As you can see, the field definition is similar to a Selection field, but here the selection list
holds the models that can be used. On the user interface, the user will first pick a model
from the av available list, and then pick a record from that model.

This can be taken to another level of flexibility: a Referenceable Models configuration table
exists to configure the models that can be used in Reference fields. It is available in the
Settings | Technical | Database Structure menu. When creating such a field we can set it to
use any model registered there, with the help of the function in
the module.

Using the Referenceable Models configuration, an improved version of the
field would look like this:

from odoo.addons.base.res.res_request import referenceable_models

 refers_to = fields.Reference(
 referenceable_models, 'Refers to')

Note that in Odoo 9.0 this function used a slightly different spelling, and was still using the
old API. So in version 9.0, before using the code shown before, we have to add some code at
the top of our Python file to wrap it so that it uses the new API:

Computed fields
Fields can have values calculated by a function, instead of simply reading a database stored
value. A computed field is declared just like a regular field, but has the additional
argument defining the function used to calculate it.

In most cases computed fields involve writing some business logic, so we will develop this
topic more in , ORM Application Logic Supporting Business Processes. We will still
explain them here, but will keep the business logic side as simple as possible.

Let's work on an example: Stages have a field. We will add to To-do Tasks a computed
field with the Folded? flag for the corresponding Stage.

Models – Structuring the Application Data

[109]

We should edit the model in the file to add the following:

The preceding code adds a new field and the method
used to compute it. The function name was passed as a string, but it's also allowed to pass it
as a callable reference (the function identifier with no quotes). In this case we should make
sure the function is defined in the Python file before the field is.

The decorator is needed when the computation depends on other fields, as
it usually does. It lets the server know when to recompute stored or cached values. One or
more field names are accepted as arguments and dot-notation can be used to follow field
relationships.

The computation function is expected to assign a value to the field or fields to compute. If it
doesn't, it will error. Since is a record object, our computation here is simply to get the
Folded? field using . The result is achieved by assigning that value (writing
it) to the computed field, .

We won't be working yet on the views for this module, but you can make right now a quick
edit on the task form to confirm if the computed field is working as expected: using the
Developer Mode pick the Edit View option and add the field directly in the form XML.
Don't worry: it will be replaced by the clean module view on the next upgrade.

Searching and writing on computed fields
The computed field we just created can be read, but it can't be searched or written. To
enable these operations, we first need to implement specialized functions for them. Along
with the function, we can also set a function, implementing the search
logic, and the function, implementing the write logic.

Models – Structuring the Application Data

[110]

Using these, our computed field declaration becomes like this:

 search='_search_stage_fold',
 inverse='_write_stage_fold'

And the supporting functions are:

The function is called whenever a condition on this
field is found in a search domain expression. It receives the and for the
search and is expected to translate the original search element into an alternative domain
search expression.

The function performs the reverse logic of the calculation, to find the value to
write on the computation's source fields. In our example, this means writing back on the

 field.

Storing computed fields
Computed field's values can also be stored on the database, by setting on
their definition. They will be recomputed when any of their dependencies change. Since the
values are now stored, they can be searched just like regular fields, and a search function is
not needed.

Related fields
The computed field we implemented in the previous section just copies a value from a
related record into a model's own field. However this is a common usage that can be
automatically handled by Odoo.

Models – Structuring the Application Data

[111]

The same effect can be achieved using related fields. They make available, directly on a
model, fields that belong to a related model, accessible using a dot-notation chain. This
makes them usable in situations where dot-notation can't be used, such as UI form views.

To create a related field, we declare a field of the needed type, just like with regular
computed fields, but instead of compute we use the related attribute with the dot-notation
field chain to reach the desired field.

To-do Tasks are organized in customizable Stages and these is turn map into basic States.
We will make the State value available directly on the Task model, so that it can be used for
some client-side logic in the next chapter.

Similarly to , we will add a computed field on the task model, but this time
using the simpler related field:

Behind the scenes, related fields are just computed fields that conveniently implement
 and methods. This means that we can search and write on them out of the

box, without having to write any additional code.

Model Constraints
To enforce data integrity, models also support two types of constraints: SQL and Python

SQL constraints are added to the database table definition and are enforced directly by
PostgreSQL. They are defined using the class attribute. It is a list of
tuples with: the constraint identifier name; the SQL for the constraint; and the error message
to use.

A common use case is to add unique constraints to models. Suppose we don't want to allow
two active tasks with the same title:

Models – Structuring the Application Data

[112]

Python constraints can use a piece of arbitrary code to check the conditions. The checking
function should be decorated with , indicating the list of fields
involved in the check. The validation is triggered when any of them is modified and will
raise an exception if the condition fails.

For example, to validate that a Task name is at least five characters long, we could add the
following constraint:

Summary
We went through a detailed explanation of models and fields, using them to extend the To-
Do app with Tags and Stages on tasks. You learned how to define relationships between
models, including hierarchical parent/child relationships. Finally, we saw simple examples
of computed fields and constraints using Python code.

In the next chapter, we will work on the user interface for these backend model features,
making them available in the views used to interact with the application.

66
Views - Designing the User

Interface
This chapter will help you learn how to build the graphical interface for users to interact
with the To-Do application. You will discover the distinct types of views and widgets
available, understand what context and domain are, and learn how to use them to provide a
good user experience.

We will continue working with the module. It already has the Model layer ready,
and now it needs the View layer for the user interface.

Defining the user interface with XML files
Each component of the user interface is stored in a database record, just like business
records are. Modules add UI elements to the database loading the corresponding data from
XML files.

This means that a new XML data file for our UI needs to be added to the module.
We can start by editing the file to declare these new data files:

'data': [
 'security/ir.model.access.csv',
 'views/todo_view.xml',
 'views/todo_menu.xml',
]

Views - Designing the User Interface

[114]

Remember that the data files are loaded in the order you specify. This is
important because you can only reference XML IDs that were defined
before they are being used.

We might also create the subdirectory and the and
 files with a minimal structure:

In , Inheritance Extending Existing Applications, a basic menu was given to our
application, but we now want to improve it. So we will be adding new menu items and the
corresponding window actions, to be triggered when they are selected.

Menu items
Menu items are stored in the model and can be browsed via the Settings
menu under Technical | User Interface | Menu Items.

The addon created a top-level menu to open the To-Do app tasks. Now we want
to modify it to a second-level menu and have other menu options alongside it.

To do this, we will add a new top-level menu for the app and modify the existing To-Do
task menu option. To , add:

Views - Designing the User Interface

[115]

Instead of using elements, we can use the more
convenient shortcut element, that provides an abbreviated way to define the
record to load.

Our first menu item is for the To-do app top menu entry, with only the attribute, and
will be used as the parent for the next two options.

Notice that it uses the existing XML ID , thus rewriting the
menu item, defined in the module, without any action attached to it. This is
because we will be adding child menu items, and the action to open the Task views will
now be called from one of them.

Then next menu items are placed under the top level item, through the
 attribute.

The second menu is the one opening the Task views, through the
 attribute. As you can see from the XML ID

used, it is reusing an action already created by the module.

The third menu item adds the Configuration section for our app. We want it to be available
only for super users, so we also use the groups attribute to make it visible only to the
Administration | Settings security group.

Finally, under the Configuration menu we add the option for the task Stages. We will use it
to maintain the Stages to be used by the kanban feature we will be adding to the To-do
Tasks.

At this point, if we try to upgrade the addon we should get errors because we haven't
defined the XML IDs used in the attributes. We will be adding them in the next
section.

Views - Designing the User Interface

[116]

Window actions
A window action gives instructions to the GUI client, and is usually used by menu items or
buttons in views. It tells the GUI what model to work on, and what views to make available.
These actions can force for only a subset of the records to be visible, using a filter.
They can also set default values and filters through the attribute.

We will add window actions to the data file, which will be used by
the menu items created in previous section. Edit the file, and make sure they are added
before the menu items:

Window actions are stored in the model and can be defined in
XML files using the shortcut used in the preceding code.

The first action will open the Task Stages model and include the most relevant attributes for
window actions:

 is the title that will be displayed on the views opened through this action.
 is the identifier of the target model.

Views - Designing the User Interface

[117]

 is the view type available and their order. The first is the one opened
by default.

, if set to , will open the view in a pop-up dialog window. By default it
is , opening the view inline, in the main content area.

 sets context information on the target views, which can set default
values or activate filters, among other things. We will see it in more details in a
moment.

 is a domain expression forcing a filter for the records that will be
browseable in the opened views.

 is the number of records for each page, in the list view.

The second action defined in the XML is replacing the original To-do Tasks action of the
 addon so that it displays the other view types we will explore later in this

chapter: calendar and graph. After these changes are installed, you'll see additional buttons
in the top-right corner, after the list and form buttons; however, these won't work until we
create the corresponding views.

We also added a third action, not used in any of the menu items. It shows us how to add an
option to the More menu, available at the top-right part of the list and form views. To do so,
it uses two specific attributes:

 indicates on what model this action should be made available.
, when set to , makes it available in the list view so that it can applied

to a multiple selection of records. The default value is , as in our example,
it will make the option available only in the form view, and so can only be
applied to one record at a time.

Context and domain
We have stumbled upon context and domain several times. We have seen that window
actions are able to set them and relational fields in models can also have them as attributes.

Context data
The context is a dictionary carrying session data that can be used on both the client-side
user interface and the server-side ORM and business logic.

Views - Designing the User Interface

[118]

On the client side it can carry information from one view to next, such as the ID of the
record active on the previous view, after following a link or a button, or to provide default
values to be used in the next view.

On the server side, some recordset field values can depend on the locale settings provided
by the context. In particular the key affects the value of translatable fields. Context can
also provide signals for server-side code. For example, the key when set to

 changes the behavior of ORM's method so that it does not filter out
inactive records.

An initial context from the web client looks like this:

You can see the key with the user language, with the time zone information, and
 with the current user ID.

When opening a form from a link or a button in a previous view, an key is
added to the context, with the ID of record we were positioned at, in the origin form. In the
particular case of list views, we have an context key containing a list of the
record IDs selected in the previous list.

On the client side, the context can be used to set default values or activate default filters on
the target view, using keys with the or prefixes. Here are
some examples:

To set the current user as a default value of the field, we will use the following:

default

To have a filter activated by default on the target view, we will use this:

default_search

Domain expressions
The domain is used to filter data records. They use a specific syntax that the Odoo ORM
parses to produce the SQL WHERE expressions that will query the database.

A domain expression is a list of conditions. Each condition is a
 tuple. For example, this is a valid domain expression, with only

one condition: .

Views - Designing the User Interface

[119]

Following is an explanation of each of these elements:

The field name is the field being filtered, and can use dot-notation for fields in related
models.

The value is evaluated as a Python expression. It can use literal values, such as numbers,
Booleans, strings, or lists, and can use fields and identifiers available in the evaluation
context. There are actually two possible evaluation contexts for domains:

 When used in the client-side, such as in window actions or field attributes, the
raw field values used to render the current view are available, but we can't use
dot-notation on them.
When used on the server-side, such as in security record rules and in server
Python code, dot-notation can be used on fields, since the current record is an
object.

The operator can be:

The usual comparison operators are , , , , , .
 matches against a pattern, where the underscore symbol, , matches

any single character, and the percentage symbol, , matches any sequence of
characters.

 matches against a pattern. The is similar but case
insensitive. The and operators are also available.

 finds the children values in a hierarchical relation, for the models
configured to support them.

 and are used to check for inclusion in a given list, so the value
should be a list of values. When used on a to-many relation field the
operator behaves like a operator.

A domain expression is a list of items, and can contain several condition tuples. By default
these condition will implicitly be combined using the AND logical operator. This means
that it will only return records meeting all these conditions.

Explicit logic operators can also be used: the ampersand symbol, , for AND operations
(the default), and the pipe symbol, , for OR operations. These will operate on the next
two items, working in a recursive way. We'll look at this in more detail in a moment.

Views - Designing the User Interface

[120]

The exclamation point, , represents the NOT operator, is also available and operates on
the next item. So, it should be placed before the item to be negated. For example, the

 expression would filter all not done records.

The next item can also be an operator item acting on its next items, defining nested
conditions. An example may help us to better understand this.

In server-side record rules, we can find domain expressions similar to this one:

This domain filters all the records where the current user is in the follower list, is the
responsible user, or does not have a responsible user set.

The first (OR) operator acts on the follower's condition plus the result of the next
condition. The next condition is again the union of two other conditions: records where
either the user ID is the current session user or it is not set.

The following diagram illustrates this nested operators resolution:

Views - Designing the User Interface

[121]

The form views
As we have seen in previous chapters, form views can follow a simple layout or a business
document layout, similar to a paper document.

We will now see how to design these business document views and how to use the
elements and widgets available. We would normally do this by inheriting and extending
the views. But for the sake of clarity, we will instead create completely new
views to override the original ones.

Dealing with several views of the same type
The same model can have more than one view of the same type. This can be useful since an
window action can tell the specific view that should be used, through its XML ID. So we
have the flexibility to have two different menu items to open the same model using
different views. This is done adding a attribute to the window action, with the
XML ID of the view to use. For example, we could have used this in the

 action, with something similar to:
.

But what happens if no specific view is define? In that case the one used will be the first one
returned when querying for views. This will be the one with the lower priority . If we add a
new view and set it with a lower priority than the existing ones, it will be the one used. The
final effect is that it looks like this new view is overriding the original one.

Since the default value for the view priority is 16, any lower value would do, so a 15
priority will work.

It's not the most commonly used route, to help keeping our examples as readable as
possible, we will use the priority approach in our next examples.

Business document views
Business applications are often systems of record for products in a warehouse, invoices in
an accounting department, and many more. Most of the recorded data can be represented
as a paper document. For a better user experience, form views can mimic these paper
documents. For example, in our app, we could think of a To-Do Task as something that has
a simple paper form to fill out. We will provide a form view that follows this design.

Views - Designing the User Interface

[122]

To add a view XML with the basic skeleton of a business document view, we should edit
the file and add it to the top:

 <header>

 </header>
 <sheet>

 </sheet>

 <div class="oe_chatter">

</div>

The view name is optional and automatically generated if missing. For simplicity, we took
advantage of that and omitted the element from the view record.

We can see that business document views usually use three main areas: the header status
bar, the sheet for the main content, and a bottom history and communication section, also
known as chatter.

The history and communication section, at the bottom, uses the social network widgets
provided by the mail addon module. To be able to use them, our model should inherit the

 mixin model, as we saw in , Inheritance Extending Existing
Applications.

The header
The header at the top usually features the life cycle or steps that the document will move
through and the action buttons.

These action buttons are regular form buttons, and the most important next steps can be
highlighted, using .

Views - Designing the User Interface

[123]

The document life cycle uses the widget on a field that represents the point in
the life cycle where the document is currently at. This is usually a State selection field or a
Stage many-to-one field. These two fields can be found across several Odoo core modules.

The stage is a many-to-one field which uses a supporting model to set up the steps of the
process. Because of this it can be dynamically configured by end users to fit their specific
business process, and is perfect to support kanban boards.

The state is a selection list featuring a few, rather stable, steps in a process, such as ,
, and . It is not configurable by end users but, since it is static, it is much

easier to be used in business logic. The view fields even have special support for it: the state
attribute allows a field to be available to the user or not, depending on the document state.

Historically, stages were introduced later than states. Both have coexisted, but the trend in
the Odoo core is for stages to replace states. But as seen in the preceding explanation, states
still provide some features that stages don't.

It is still possible to benefit from the best of both worlds, by mapping the stages into states.
This was what we did in the previous chapter, by adding a state field in the task Stages
model, and making it also available in the To-do Task documents through a computed
field, enabling the use of the state field attribute.

In the file we can now expand the basic header to add a status bar:

Here we add as a hidden field. We need this to force the client to also include that
field in the data requests sent to the server. Otherwise it won't be available to be used in
expressions.

Views - Designing the User Interface

[124]

It is important to remember that any field you wish to use, in a domain or
 expression, must be loaded into the view, so you will make fields

invisible any time you need them but don t need users to see them.

Next a button is added to the status bar, to let the user toggle the Task's Done flag.

The buttons displayed in the status bar should change based on the where in the life cycle
the current document is.

 We used the attribute to hide the button when the document is in the state.
The condition to do this uses the field, not shown on the form, which is why we had
to add it as a hidden field.

If we have a selection field, we can instead use the attribute. In this case we
do, and the same effect could be achieved using . While it's not as
flexible as attribute, it is more concise.

These visibility features can be also used on other view elements, such as fields. We will
explore them in more detail later in this chapter.

The attribute allows the user to change the document stage by clicking on the
status bar. We usually want to enable this, but there are also cases where we don't, such as
when we need more control over the workflow, and require the users to progress through
the stages using only the available action buttons, so that these can perform validations
before moving between stages.

When using a status bar widget with stages, we can have the seldom used stages hidden in
a More stage group. For this, the stages model must have a flag to configure the ones to
hide, usually named . And the widget should use an attribute, as
shown in the preceding code, to provide that field name to the option.

When using the status bar widget with a state field, a similar effect can be achieved with the
 attribute, used to list states that should be always visible and hide

exception states necessary for less common cases. For example:

Views - Designing the User Interface

[125]

The sheet
The sheet canvas is the main area of the form where the actual data elements are placed. It is
designed to look like an actual paper document, and it is common to see that the records in
Odoo are referred to as documents.

Usually, a document sheet structure will have these areas:

A document title and subtitle at the top.
A button box at the top-right corner.
Other document header fields.
A notebook for additional fields organized in tabs or pages. Document lines
would also go here, usually in the first notebook page.

Let's go through each of these areas.

Title and subtitle
Fields outside a element don't automatically have labels rendered for them. This
will be the case for the title elements, so the element should be used
to render it. At the expense of some extra work, this has the advantage of giving more
control over the label display.

Regular HTML, including CSS-style elements, can also be used to make the title shine. For
best results, the title should be inside a with the class.

Here is the element expanded to include the title plus some additional fields as
subtitles:

Views - Designing the User Interface

[126]

Here we can see that we use regular HTML elements, such as , , , and . The
 element allows us to control when and where it will be shown. The attribute

identifies the field we should get the label text from. Another possibility is to use the
 attribute to provide a specific text to use for the label. Our example also uses the

 attribute so that it is visible only in edit mode.

In some cases, such as Partners or Products, a representative image is shown at the top-left
corner. Supposing we had a binary field, we could add before the

 line, using:

Smart buttons area
The top-right area can have an invisible box where buttons can be placed. The version 8.0
introduced smart buttons, shown as rectangles with a statistic indicator that can be followed
through when clicked.

We can add the button box right after the end of the DIV, with the following:

The container for the buttons is a with the class and also , to
align it to the right-hand side of the form. We will be discussing buttons in more detail in a
later section, so we will wait until then to add actual buttons in this box.

Grouping content in a form
The main content of the form should be organized using tags. The tag
inserts two columns in the canvas, and inside it, by default, fields will be displayed with
labels.

A field value and field label takes two columns, so adding fields inside a group will have
them stacked vertically. If we nest two elements inside a top group, we will be
able to get two columns of fields with labels, side by side.

Views - Designing the User Interface

[127]

Continuing with our form view, we can now add the main content after the smart buttons
box:

<group name="group_top">
 <group name="group_left">

<separator string="Reference" />

</group>
 <group name="group_right">

</group>
</group>

It is a good practice to assign a to group tags so that it's easier to reference them later
to extend the view (either by you or another developer). The attribute is also
allowed, and if set, is used to display section title.

Inside a group, a element will force a new line and the next element will be
rendered in the group's first column. Additional section titles can be added inside a group
using the element.

Try the Toggle Form Layout Outline option from Developer menu: it
draws lines around each group section, allowing for a better
understanding of the current form layout.

We can have greater control over the layout of a group element using the and
attributes.

The attribute can be used on elements to customize the number of columns it
will contain. The default is , but it can be changed to any other number. Even numbers
work better since by default each field added takes up two columns, for the label plus the
field value.

The elements placed inside the group, including elements, can use a
attribute to set a specific number of columns they should take. By default one column is
taken up.

Views - Designing the User Interface

[128]

Tabbed notebooks
Another way to organize content is using the element, containing multiple
tabbed sections, called pages. These can be used to keep less used data out of sight until
needed, or to organize a large number of fields by topic.

We won't need to add this to our To-do Task form, but here is an example that could be
added to a Task Stages form:

View semantic components
We have seen how to organize the content in a form, using structural components such as
header, group, and notebook. Now we can take a closer look at the semantic components,
fields and buttons, and what we can do with them.

Fields
View fields have a few attributes available for them. Most of them have values taken from
their definition in the model, but these can be overridden in the view.

Attributes that are generic, and do not depend on the field type, are:

 identifies the field database name.
 is the label text, to be used if we want to override the label text provided

by the model definition.
 is a tooltip text shown when you hover the pointer over the field, and

allows to override the help text provided by the model definition.
 is a suggestion text to display inside the field.

 allows us to override the default widget used for the field. We will
explore the available widgets in a moment.

Views - Designing the User Interface

[129]

 is a JSON data structure with additional options for the widget and
depends on what each widget supports.

 are the CSS classes to use for the field HTML rendering.
 prevents the automatic field label from being presented. It only

makes sense for the fields inside a element and is often used along with
a element.

 makes the field not visible, but it's data is fetched from the
server and is available on the form.

 makes the field non-editable on the form.
 makes the field mandatory on the form.

Attributes specific to some field types are:

 is used for text fields. It is displayed as a password field,
masking the characters typed in.

 is used for binary fields, and it is the name of the model field to be
used to store the name of the uploaded file.

 is used for one-to-many fields. It specifies the view type to use to display
the records. By default, it is , but can also be , , or .

Labels for fields
The element can be used to better control the presentation of a field label. One
case where this is used is to present the label only when the form is in edit mode:

When doing this, if the field is inside a element, we usually want to also set
 on it.

Relational fields
On relational fields, we can have some additional control on what the user can do. By
default, the user can create new records from these fields (also known as quick create) and
open the related record form. This can be disabled using the field attribute:

Views - Designing the User Interface

[130]

The context and domain are also particularly useful on relational fields. The context can
define the default values for the related records, and the domain can limit the selectable
records. A common example is top have the list of records selectable in a field to depend on
the current value for another field of the current record. The domain can be defined in the
model, but it can also be overridden in the View.

Field widgets
Each field type is displayed in the form with the appropriate default widget. But additional
alternative widgets are available to be used.

For text fields, we have the following widgets:

 is used to make the e-mail text an actionable mail to address.
 is used to format the text as a clickable URL.

 is used to render the text as HTML content; in edit mode, it features a
WYSIWYG editor to allow the formatting of the content without the need for
using the HTML syntax.

For numeric fields, we have the following widgets:

 is specifically designed for sequence fields in list views and displays a
handle that allows you to drag lines to a custom order.

 formats a float field with time quantities as hours and minutes.
 displays a float field as the currency amount. It expects a

 companion field, but another field name can be provided with
.

 presents a float as a progress percentage and can be useful for
fields representing a completion rate.

For relational and selection fields, we have these additional widgets:

 displays values as a list of button-like labels.
 uses the field widget for a many-to-one field.

 displays the field options using radio buttons.

 shows a semaphore light for the kanban state
selection list. The normal state is represented in gray, done is represented in
green, and any other state is represented in red.

Views - Designing the User Interface

[131]

 represents the field as a list of clickable stars. The selection
options are usually a numeric digit.

Buttons
Buttons support these attributes:

 is for icon image to use in the button to display; unlike smart buttons, the
icons available for regular buttons are limited to the ones available in

.
 is the button text label, or the HTML text when an icon is used.

 is the typo of the action to perform. Possible values are:
 is used to trigger a workflow engine signal;

 is used for calling a Python method;
 is used to run a window action.

 identifies the specific action to perform, according to the chosen type: either
a workflow signal name, a model method name, or the database ID of window
action to run. The formula can be used to translate the XML ID into
the required Database ID.

 is used when the is , to pass additional parameters to the
method.

 adds values to the context, that can have effects after the windows
action is run, or in the Python code methods called.

 displays a confirmation message box, with the text assigned to this
attribute.

 is used on wizards, to cancel and close the wizard form.

Smart buttons
When designing the form structure, we included a top-right area to contain smart buttons.
Let's now add a button inside it.

For our app, we will have a button displaying the total number of to-dos for the owner of
the current to-do, and clicking on it would navigate to the list of those items.

Views - Designing the User Interface

[132]

First we need to add the corresponding computed field to . Add
to the class with the following:

Next we add the button box and the button inside it. Right after the end of the
DIV, replace the buttons box placeholder we added before, with the following:

This button displays the total number of To-do Tasks for the person responsible for this to-
do task, computed by the field.

These are the attributes that we can use when adding smart buttons:

 renders a rectangle instead of a regular button.
 sets the icon to use, chosen from the Font Awesome set. Available icons can

be browsed at .
 and are the button type and the name of the action to trigger. For

smart buttons the type will usually be , for a window action, and
will be the ID of the action to execute. It expects an actual database ID, so we
have to use a formula to convert an XML ID into a database ID:

. This action should open a view with the related records.
 adds label text to the button. We have not used it here because the

contained field already provides a text for it.
 should be used to set default values on the target view, to be used on

new records created on the view after clicking through the button.

Views - Designing the User Interface

[133]

 adds a help tooltip displayed when the mouse pointer is over the button.

The element itself is a container, with fields displaying statistics. Those are regular
fields using the widget . The field should be a computed field defined in the
underlying model. Other than fields, inside a button we can also use static text, such as:

When clicking on the button, we want to see a list with only the Tasks for the current
responsible user. That will be done by the action, not yet
implemented. But it needs to know the current responsible user, to be able to perform the
filter. For that we use the button's attribute to store that value.

The Action used must to be defined before the Form, so we should add it at the top of the
XML file:

Notice how we use the context key for the domain filter. This particular
key will also set the default value on the field when creating new Tasks after
following the button link.

Dynamic views
View elements also support a few dynamic attributes that allow views to dynamically
change their appearance or behavior depending on field values . We may have on change
events, able change values on other fields while editing data on a form, or have fields to be
mandatory or visible only when certain conditions are met.

On change events
The on change mechanism allows us to change values in other form fields when a
particular field is changed. For example, the on change on a Product field can set the Price
field with a default value whenever the product is changed.

Views - Designing the User Interface

[134]

In older versions the on change events were defined at the view level, but since version 8.0
they are defined directly on the Model layer, without the need for any specific markup on
the views. This is done by creating methods to perform the calculations, and using

 to bind it to fields. These onchange methods are
discussed in more detail in , ORM Application Logic Supporting Business
Processes.

Dynamic attributes
The on change mechanism also takes care of the automatic recomputation of computed
fields, to immediately react to the user input. Using the same example as before, if the Price
field is changed when we changed the Product, a computed Total Amount field would also
be automatically updated using the new price information. Dynamic attributes A couple of
attributes provide an easy way to control the visibility of a particular user interface element:

 can make an element visible depending on the security Groups the
current user belongs to. Only the members of the specified groups will see it. It
expects a comma separated list of Group XML IDs.

 can make an element visible depending on the record's State field. It
expects a comma separated list of State values.

Other than these, we also have a flexible method available to set an element visibility
depending on a client-side dynamically evaluated expression. This is the special
attribute, expecting for a value dictionary that maps the value of the attribute to
the result of an expression.

For example, to have the field visible in all states except draft, use the following
code:

The attribute is available in any element, not only fields. For example, we can
use it on notebook pages and in group elements.

The can also set values for two other attributes: and . These
only make sense for data fields, to make them not editable or mandatory. This allows us to
implement some basic client-side logic, such as making a field mandatory depending on
other record values, such as the State.

Views - Designing the User Interface

[135]

List views
At this point, list views should need little introduction, but we are still going to discuss the
attributes that can be used with them. Here is an example of a list view for our To-Do Tasks:

The row text color and font can change dynamically depending on the results of a Python
expression evaluation. This is done through attributes, with the
expression to evaluate based on field attributes. The part can be or , for bold and
italic fonts, or any Bootstrap text contextual colors: , , , ,

, or . The Bootstrap documentation has examples on how these are
presented: .

The and attributes, available in version 8.0, were
deprecated in version 9.0. The new decoration attributes should be used
instead.

Remember that fields used in expressions must be declared in a element, so that
web client knows that that column needs to be retrieved from the server. If we don't want to
have it displayed to the user, we should use the attribute on it.

Other relevant attributes of the tree element are:

 allows to override the model's default sort order, and its value
follows the same format as in order attribute used in model definitions.

, , and , if set to (in lowercase) disables the
corresponding action on the list view.

 makes records editable directly on the list view. Possible values are
 and , the location where the new records will be added.

Views - Designing the User Interface

[136]

A list view can contain fields and buttons, and most of their attributes for forms are also
valid here.

In list views, numeric fields can display summary values for their column. For this add to
the field one of the available aggregation attributes, , , , or , and assign to it
the label text for the summary value. For example:

Search views
The search options available are defined through the view type. We can choose
the fields can be automatically searched when typing in the search box. We can also provide
predefined filters, activated with a click, and predefined grouping options to be used in list
views.

Here is a possible search view for the To-Do Tasks:

We can see two fields to be searched for and . When the user starts typing
on the search box, a drop-down will suggest searching on any of these fields. If the user
types the search will be performed on the first of the filter fields.

Views - Designing the User Interface

[137]

Then we have two predefined filters, filtering not done and done tasks. These filters can be
activated independently, and will be joined with an OR operator. Blocks of filters separated
with a element will be joined with an AND operator.

The third filter only sets a group by context. This tells the view to group the records by that
field, in this case.

The field elements can use the following attributes:

 identifies the field to use.
 is a label text which is used instead of the default.

 is used to change the operator from the default one (for numeric
fields and for the other field types).

 sets a specific domain expression to use for the search,
providing one flexible alternative to the operator attribute. The searched text
string is referred in the expression as self. A trivial example is:

.
 makes the search on the field available only for users belonging to some

security Groups. Expects a comma separated list of XML IDs.

For the filter elements, these are the attributes available:

 is an identifier to use by inheritance or to enable it through window actions.
Not mandatory, but it is a good practice to always provide it.

 is the label text to display for the filter. Required.
 is the domain expression to be added to the current domain.

 is a context dictionary to add to the current context. Usually sets a
 key with the name of the field to group records.

 makes the search on the field available only for a list of security Groups
(XML IDs).

Views - Designing the User Interface

[138]

Calendar views
As the name suggests, this view type presents the records in a calendar that can be viewed
for month, week, or days periods of time. A calendar view for the To-Do Tasks could look
like this:

The calendar attributes are:

 is the field for the start date. Mandatory.
 is the field for the end date. Optional.

 is the field with the duration in days, that can be used instead of
.

 provides the name of a Boolean field that is to be used to signal full day
events. In these events, the duration is ignored.

 is the field used to group color the calendar entries. Each distinct value in
this field will be assigned a color, and all its entries will have the same color.

 is the display text for each calendar entry. It can user record values
using the field names between square brackets, such as . These fields
must be declared as child of the calendar element, an in the preceding example.

 is the default display mode for the calendar, either , , or .

Views - Designing the User Interface

[139]

Graph and pivot views
Graph views provide a graphical view of the data, in the form of a chart. The current fields
available in the To-do Tasks are not good candidates for a chart, so we will add one to use
on such a view.

In the class, at the file, add:

It also needs to be added to the To-do Task form, so that we can add values for it on the
existing records, and are able to check this new view.

Now let's add the To-Do Tasks graph view:

The view element can have a attribute that can be set to (the default), ,
or . In the case of , the additional can be used to make it a
stacked bar chart.

The data can also be seen in a pivot table, a dynamic analysis matrix. For this, we have the
pivot view, introduced in version 9.0. Pivot tables were already available in version 8.0, but
in 9.0, they moved into their own view type. Along with this, it improved the UI features of
Pivot tables, and optimized the retrieval of pivot table data greatly.

Views - Designing the User Interface

[140]

To also add a pivot table to the To-Do Tasks, use this code:

The graph and pivot views should contain field elements describing the axis and measures
to use. Most of the available attributes are common to both the view types:

 identifies the field to use in the graph, just like in other views
 is how the field will be used, as a group (default), a , or as

 (only for pivot tables, use for column groups)
 is meaningful for date fields, and is the time interval used to group

time data by , , , , or

By default, the aggregation used is the sum of the values. This can be changed by setting the
 attribute on the Python field definition. The values that can be used

include , , and .

Other view types
It's worth noting that we didn't cover three other view types that are also available: kanban,
gantt, and diagram.

Kanban views will be covered in detail in , QWeb and Kanban Views.

The gantt view was available until version 8.0, but it was removed in version 9.0
Community edition because of license incompatibilities.

Finally, the diagram views are used for quite specific cases, and an addon module will need
them rarely. Just in case, you might like to know that the reference material for the two
view types can be found in the official documentation,

.

Views - Designing the User Interface

[141]

Summary
Summary In this chapter, we learned more about Odoo views in order to build the user
interface, covering the most important view types. In the next chapter, we will learn more
about adding business logic to our applications.

77
ORM Application Logic –

Supporting Business Processes
With the Odoo programming API, we can write complex logic and wizards to provide a
rich user interaction for our apps. In this chapter, we will see how to write code to support
business logic in our models, and we will also learn how to activate it on events and user
actions.

We can perform computations and validations on events, such as creating or writing on a
record, or perform some logic when a button is clicked. For example, we implemented
button actions for the To-do Tasks, to toggle the Is Done flag and to clear all done tasks by
inactivating.

Additionally, we can also use wizards to implement more complex interactions with the
user, allowing to ask for inputs and provide feedback during the interaction.

We will start by building such a wizard for our To-Do app.

Creating a wizard
Suppose our To-Do app users regularly need to set the deadlines and person responsible for
a large number of tasks. They could use an assistant to help with this. It should allow them
to pick the tasks to be updated and then choose the deadline date and/or the responsible
user to set on them.

Wizards are forms used to get input information from users, then use it for further
processing. They can be used for simple tasks, such as asking for a few parameters and
running a report, or for complex data manipulations, such as the use case described earlier.

ORM Application Logic – Supporting Business Processes

[143]

This is how our wizard will look:

We can start by creating a new addon module for the feature.

Our module will have a Python file and an XML file, so the
 description will be as shown in the following code:

As in previous addons, the file is just one line:

Next, we need to describe the data model supporting our wizard.

ORM Application Logic – Supporting Business Processes

[144]

The wizard model
A wizard displays a form view to the user, usually as a dialog window, with some fields to
be filled in. These will then be used by the wizard logic.

This is implemented using the same model/view architecture as for regular views, but the
supporting model is based on instead of .

This type of model has also a database representation and stores state there, but this data is
expected to be useful only until the wizard completes its work. A scheduled job regularly
cleans up the old data from wizard database tables.

The file will define the fields we need to interact with
the user: the list of tasks to be updated, the user responsible, and the deadline date to set on
them.

First add the file with following line of code:

Then create the actual file:

It's worth noting that one-to-many relations to regular models should not be used in
transient models. The reason for this is that it would require the regular model to have the
inverse many-to-one relation with the transient model, but this is not allowed, since there
could be the need to garbage-collect the regular model records along with the transient
records.

ORM Application Logic – Supporting Business Processes

[145]

The wizard form
The wizard form views are the same as for regular models, except for two specific elements:

A section can be used to place the action buttons
A special button available to interrupt the wizard without
performing any action

This is the content of our file:

ORM Application Logic – Supporting Business Processes

[146]

The window action we see in the XML adds an option to the More button of
the To-do Task form by using the attribute. The attribute makes
it open as a dialog window.

You might also have noticed that is used in the Mass Update button, to add the nice
touch of making it invisible until either a new deadline or responsible user is selected.

The wizard business logic
Next, we need to implement the actions to perform on the form buttons. Excluding the
Cancel button, we have three action buttons to implement, but now we will focus on the
Mass Update button.

The method called by the button is and it should be defined in the
 file, as shown in the following code:

ORM Application Logic – Supporting Business Processes

[147]

Our code should handle one wizard instance at a time, so we used to
make that clear. Here represents the browse record for the data on the wizard form.

The method begins by validating if a new deadline date or responsible user was given, and
raises an error if not. Next, we have an example of how to write a debug message to the
server log.

Then the dictionary is built with the values to set with the mass update: the new date,
new responsible, or both. And then the method is used on a recordset to perform the
mass update. This is more efficient than a loop performing individual writes on each record.

It is a good practice for methods to always return something. This is why it returns the
value at the end. The sole reason for this is that the XML-RPC protocol does not support

 values, so those methods won't be usable using that protocol. In practice, you may not
be aware of the issue because the web client uses JSON-RPC, not XML-RPC, but it is still a
good practice to follow.

Next, we will have a closer look at logging, and then will work on the logic behind the two
buttons at the top: Count and Get All.

Logging
These mass updates could be misused, so it might be a good idea to log some information
when it is used. The preceding code initializes the in the two lines before the

 class, using the Python standard library. The Python
internal variable is to identify the messages as coming from this module.

To write log messages in method code we can use:

ORM Application Logic – Supporting Business Processes

[148]

When passing values to use in the log message, instead of using string interpolation, we
should provide them as additional parameters. For example, instead of

 we should use
. You may notice that we did so in the method.

An interesting thing to note about logging, is that log entries always print
the timestamp in UTC. This may come as a surprise to new administrators,
but is due to the fact that the server internally handles all dates in UTC.

Raising exceptions
When something is not right, we will want to interrupt the program with an error message.
This is done by raising an exception. Odoo provides a few additional exception classes to
the ones available in Python. These are examples for the most useful ones:

The message also interrupts execution but can sound less severe than a
. While it's not the best user interface, we take advantage of that on the

Count button to display a message to the user:

As a side note, it looks like we could have used the decorator, since this
method does not operate on the recordset. But in this case we can't because the
method needs to be called from a button.

ORM Application Logic – Supporting Business Processes

[149]

Helper actions in wizards
Now suppose we want a button to automatically pick all the to-do tasks to spare the user
from picking them one by one. That's the point of having the Get All button in the form.
The code behind this button will get a recordset with all active tasks and assign it to the
tasks in the many-to-many field.

But there is a catch here. In dialog windows, when a button is pressed, the wizard window
is automatically closed. We didn't face this problem with the Count button because it uses
an exception to display its message; so the action is not successful and the window is not
closed.

Fortunately, we can work around this behavior by asking the client to reopen the same
wizard. Model methods can return a window action to be performed by the web client, in
the form of a dictionary object. This dictionary uses the same attributes used to define
window actions in XML files.

We will define a helper function for the window action dictionary to reopen the wizard
window, so that it can be easily reused in several buttons:

It is worth noting that the window action could be something else, like jumping to a
different wizard form to ask for additional user input, and that can be used to implement
multi-page wizards.

ORM Application Logic – Supporting Business Processes

[150]

Now the Get All button can do its job and still keep the user working on the same wizard:

Here we can see how to work with any other available model: we first use to
get a reference to the model, in this case, and can then perform actions on it,
such as to retrieve records meeting some search criteria.

The transient model stores the values in the wizard form fields, and can be read or written
just like any other model. The variable is assigned to the model one-
to-many field. As you can see, this is done just like we would for any other field type.

Working with the ORM API
From the previous section, we already got a taste of what it is like to use the ORM API. Next
we will look at what more we can do with it.

Method decorators
During our journey, the several methods we encountered used API decorators like

. These are important for the server to know how to handle the method. Let's
recap the ones available and when they should be used.

The decorator is used to handle recordsets with the new API and is the most
frequently used. Here is a recordset, and the method will usually include a loop
to iterate it.

In some cases, the method is written to expect a singleton: a recordset containing no more
than one record. The decorator was deprecated as of 9.0 and should be avoided.
Instead we should still use and add to the method code a line with

, to ensure it is a singleton.

ORM Application Logic – Supporting Business Processes

[151]

As mentioned, the decorator is deprecated but is still supported. For
completeness, it might be worth knowing that it wraps the decorated method, feeding it one
record at a time, doing the recordset iteration for. In our method is guaranteed to be a
singleton. The return values of each individual method call are aggregated as a list and
returned.

The decorates a class-level static method, and it does not use any recordset
data. For consistency, is still a recordset, but its content is irrelevant. Note that this
type of method cannot be used from buttons in the user interface.

A few other decorators have more specific purposes and are to be used together with the
decorators described earlier:

 is used for computed field functions to identify on
what changes the (re)calculation should be triggered

 is used for validation functions to identify on
what changes the validation check should be triggered

 is used for on change functions to identify the
fields on the form that will trigger the action

In particular, the methods can send a warning message to the user interface. For
example, this could warn the user that the product quantity just entered is not available in
stock, without preventing the user from continuing. This is done by having the method
return a dictionary describing the warning message:

Overriding the ORM default methods
We have learned about the standard methods provided by the API but there uses don't end
there! We can also extend them to add custom behavior to our models.

The most common case is to extend the and methods. This can be used
to add logic to be triggered whenever these actions are executed. By placing our logic in the
appropriate section of the custom method, we can have the code run before or after the
main operations are executed.

ORM Application Logic – Supporting Business Processes

[152]

Using the model as an example, we can make a custom , which would
look like this:

A custom would follow this structure:

These are common extension examples, but of course any standard method available for a
model can be inherited in a similar way to add our custom logic to it.

These techniques open up a lot of possibilities, but remember that other tools are also
available that can be better suited for common specific tasks:

To have a field value calculated based on another, we should use computed
fields. An example of this is to calculate a header total when the values of the
lines are changed.
To have field default values calculated dynamically, we can use a field default
bound to a function instead of a fixed value.
To have values set on other fields when a field is changed, we can use on change
functions. An example of this is when picking a customer, setting its currency as
the document's currency, that can later be manually changed by the user. Keep in
mind that on change only works on form view interaction and not on direct

 calls.
For validations, we should use constraint functions decorated with

. These are like computed fields but,
instead of computing values, they are expected to raise errors.

ORM Application Logic – Supporting Business Processes

[153]

Methods for RPC and web client calls
We have seen the most important model methods used to generate recordsets and how to
write on them. But there are a few more model methods available for more specific actions,
as shown here:

 is similar to the method, but instead of a recordset, it
returns a list of rows of data with the fields given as its argument. Each row is a
dictionary. It provides a serialized representation of the data that can be sent
through RPC protocols and is intended to be used by client programs and not in
server logic.

 performs a search operation followed by a read on the resulting
record list. It is intended to be used by RPC clients and saves them the extra
round trip needed when doing a followed by a on the results.

 is used to import data acquired from a CSV file. The
first argument is the list of fields to import, and it maps directly to a CSV top row.
The second argument is a list of records, where each record is a list of string
values to parse and import, and it maps directly to the CSV data rows and
columns. It implements the features of CSV data import described in ,
Module Data, like the external identifiers support. It is used by the web client
Import feature. It replaces the deprecated method.

 is used by the web client Export
function. It returns a dictionary with a data key containing the data; a list of rows.
The field names can use the and suffixes used in CSV files, and the data
is in a format compatible with an importable CSV file. The optional
argument allows for data values to be exported with their Python types, instead
of the string representation used in CSV.

The following methods are mostly used by the web client to render the user interface and
perform basic interaction:

: This returns a list of tuples with the text representing
each record. It is used by default for computing the value,
providing the text representation of relation fields. It can be extended to
implement custom display representations, such as displaying the record code
and name instead of only the name.

ORM Application Logic – Supporting Business Processes

[154]

 returns a list of tuples, where the display name
matches the text in the argument. It is used in the UI while typing in a
relation field to produce the list with the suggested records matching the typed
text. For example, it is used to implement product lookup both by name and by
reference, while typing in a field to pick a product.

 creates a new record with only the title name to use for it.
It is used in the UI for the quick-create feature, where you can quickly create a
related record by just providing its name. It can be extended to provide specific
defaults for the new records created through this feature.

 returns a dictionary with the default values for a new
record to be created. The default values may depend on variables such as the
current user or the session context.

 is used to describe the model's field definitions, as seen in the
View Fields option of the developer menu.

 is used by the web client to retrieve the structure of the UI
view to render. It can be given the ID of the view as an argument or the type of
view we want using . For example, you might try this:

.

The shell command
Python has a command-line interface that is a great way to explore its syntax. Similarly,
Odoo also has an equivalent feature, where we can interactively try out commands to see
how they work. That is the command.

To use it, run Odoo with the command and the database to use, as shown here:

$./odoo-bin shell -d todo

ORM Application Logic – Supporting Business Processes

[155]

You should see the usual server start up sequence in the terminal until it stops on a
Python prompt waiting for your input. Here, will represent the record for the

 user, as you can confirm typing the following:

>>> self
res.users(1,)
>>> self._name
'res.users'
>>> self.name
u'Administrator'

In the preceding session, we do some inspection on our environment. The represents a
 recordset containing only the record with ID . We can also confirm the

recordset's model name inspecting , and get the value for the record's
field, confirming that it is the user.

As with Python, you can exit the prompt using Ctrl + D. This will also close the server
process and return to the system shell prompt.

The shell feature was added in version 9.0. For version 8.0 there is a
community back-ported module to add it. Once downloaded and included
in the addons path, no further installation is necessary. It can be
downloaded from .

The server environment
The server shell provides a reference identical to what you would find inside a
method of the Users model, .

As we have seen, is a recordset. Recordsets carry with them an environment
information, including the user browsing the data and additional context information, such
as the language and the time zone. This information is important and guage or time zone.

We can start inspecting our current environment with:

>>> self.env
<openerp.api.Environment object at 0xb3f4f52c>

ORM Application Logic – Supporting Business Processes

[156]

The execution environment in has the following attributes available:

 is the database cursor being used
 is the ID for the session user

 is the record for the current user
 is an immutable dictionary with a session context

The environment also provides access to the registry where all installed models are
available. For example, returns a reference to the Partners
model. We can then use or on it to retrieve recordsets:

>>> self.env['res.partner'].search([('name', 'like', 'Ag')])
res.partner(7, 51)

In this example, a recordset for the model contains two records, with IDs
and .

Modifying the execution environment
The environment is immutable, and so it can't be modified. But we can create a modified
environment and then run actions using it.

These methods can be used for that:

 is provided with a user record, and returns an environment
with that user. If no user is provided, the superuser will be
used, which allows running specific queries bypassing security rules.

 replaces the context with a new one.
 modified the current context setting

values for some of its keys.

Additionally, we have the function, taking a string with an external identifier
and returns a record for it, as shown here:

>>> self.env.ref('base.user_root')
res.users(1,)

ORM Application Logic – Supporting Business Processes

[157]

Transactions and low-level SQL
Database writing operations are executed in the context of a database transaction. Usually,
we don't have to worry about this as the server takes care of that while running model
methods.

But in some cases, we may need a finer control over the transaction. This can be done
through the database cursor , as shown here:

 commits the transaction's buffered write operations
 sets a transaction savepoint to rollback to

 cancels the transaction's write operations since the last
savepoint, or all if no savepoint was created

In a shell session, your data manipulation won't be made effective in the
database until you use .

With the cursor method, we can run SQL directly in the database. It takes a
string with the SQL statement to run and a second optional argument with a tuple or list of
values to use as parameters for the SQL. These values will be used where placeholders
are found.

Caution!

With we should resist to directly add the parameter values
to the query string. This is well known security risk that can be exploited
through SQL injection attacks. Always use placeholders and the second
parameter to pass values.

If you're using a query, records should then be fetched. The function
retrieves all the rows as a list of , and retrieves them as a list of
dictionaries, as shown in the following example:

>>> self.env.cr.execute("SELECT id, login FROM res_users WHERE login=%s OR
id=%s", ('demo', 1))
>>> self.env.cr.fetchall() [(4, u'demo'), (1, u'admin')]

ORM Application Logic – Supporting Business Processes

[158]

It's also possible to run Data Manipulation Language (DML) instructions such as
and . Since the server keeps data caches, they may become inconsistent with the
actual data in the database. Because of that, while using raw DML, the caches should be
cleared afterward by using .

Caution!
Executing SQL directly in the database can lead to inconsistent data. You
should use it only if you are sure of what you are doing.

Working with recordsets
We will now explore how the ORM works and learn about the most common operations
performed with it. We will use the prompt provided by the command to
interactively explore how recordsets work.

Querying models
With , we can only access the method's recordset. But the environment
reference allows us to access any other model. For example,
returns a reference to the Partners model (which is actually an empty recordset). We can
then use or on it to generate recordsets.

The method takes a domain expression and returns a recordset with the records
matching those conditions. An empty domain will return all records. For more details on
domain expressions please refer back to , Views Designing the User Interface. If
the model has the special field, by default only the records with will
be considered.

A few optional keyword arguments are available, as shown here:

 is a string to be used as the clause in the database query. This is
usually a comma-separated list of field names.

 sets a maximum number of records to retrieve.
 ignores the first results; it can be used with to query blocks of

records at a time.

ORM Application Logic – Supporting Business Processes

[159]

Sometimes we just need to know the number of records meeting certain conditions. For that
we can use , which returns the record count instead of a recordset. It
saves the cost of retrieving a list of records just to count them, so it is much more efficient
when we don't have a recordset yet and just want to count the number of records.

The method takes a list of IDs or a single ID and returns a recordset with those
records. This can be convenient for the cases where we already know the IDs of the records
we want.

Some usage examples of this are shown here:

>>> self.env['res.partner'].search([('name', 'like', 'Ag')])
res.partner(7, 51)
>>> self.env['res.partner'].browse([7, 51])
res.partner(7, 51)

Singletons
The special case of a recordset with only one record is called a singleton recordset.
Singletons are still a recordset, and can be used wherever a recordset is expected.

But unlike multi-element recordsets, singletons can access their fields using the dot
notation, as shown here:

>>> print self.name
Administrator

In the next example, we can see the same singleton recordset also behaves as a
recordset, and we can iterate it. It has only one record, so only one name is printed out:

>>> for rec in self:
 print rec.name
Administrator

Trying to access field values on recordsets with more than one record will error, so this can
be an issue in the cases we are not sure if we are working with a singleton recordset. On
methods designed to work only with singleton, we can check this using

 at the beginning. It will raise an error if is not singleton.

Note that an empty record is also a singleton.

ORM Application Logic – Supporting Business Processes

[160]

Writing on records
Recordsets implement the active record pattern. This means that we can assign values on
them, and these changes will be made persistent in the database. This is an intuitive and
convenient way to manipulate data, as shown here:

>>> admin = self.env['res.users'].browse(1)
>>> print admin.name
Administrator
>>> admin.name = 'Superuser'
>>> print admin.name
Superuser

Recordsets also have three methods to act on their data: , , and
.

The method takes a dictionary to map fields to values and returns the created
record. Default values are automatically applied as expected, which is shown here:

>>> Partner = self.env['res.partner']
>>> new = Partner.create({'name': 'ACME', 'is_company': True})
>>> print new
res.partner(72,)

The method deletes the records in the recordset, as shown here:

>>> rec = Partner.search([('name', '=', 'ACME')])
>>> rec.unlink()
True

The method takes a dictionary to map fields to values. These are updated on all
elements of the recordset and nothing is returned, as shown here:

>>> Partner.write({'comment': 'Hello!'})

Using the active record pattern has some limitations; it updates only one field at a time. On
the other hand, the method can update several fields of several records at the
same time by using a single database instruction. These differences should be kept in mind
for cases where performance can be an issue.

ORM Application Logic – Supporting Business Processes

[161]

It is also worth mentioning to duplicate an existing record; it takes that as an
optional argument and a dictionary with the values to write on the new record. For
example, to create a new user copying from the Demo User:

>>> demo = self.env.ref('base.user_demo')
>>> new = demo.copy({'name': 'Daniel', 'login': 'dr', 'email':''})

Remember that fields with the attribute won't be copied.

Working with time and dates
For historical reasons, ORM recordsets handle and values using their
strings representations, instead of actual Python and objects. In the
database they are stored in date fields, but datetimes are stored in UTC time.

They map to and respectively.

To help handle dates, and provide few functions. For
example:

>>> from odoo import fields
>>> fields.Datetime.now()
'2014-12-08 23:36:09'
>>> fields.Datetime.from_string('2014-12-08 23:36:09')

datetime.datetime(2014, 12, 8, 23, 36, 9)

Dates and times are handled and stored by the server in a naive UTC format, which is not
time zone aware and may be different from the time zone that the user is working on.
Because of this we can make use of a few other functions to help us dealing with this:

 returns a string with the current date in the format
expected by the server and using UTC as a reference. This is adequate to compute
default values.

 returns a string with the current datetime in the
format expected by the server using UTC as a reference. This is adequate to
compute default values.

ORM Application Logic – Supporting Business Processes

[162]

 returns a string
with the current date in the session's context. The time zone value is taken from
the record's context, and the optional parameter to use is datetime instead of the
current time.

 converts a
naive datetime (without time zone) into a time zone aware datetime. The time
zone is extracted from the record's context, hence the name of the function.

To facilitate conversion between formats, both and
objects provide these functions:

 converts a string into a date or datetime object
 converts a date or datetime object into a string in the format

expected by the server

Operations on recordsets
Recordsets support additional operations on them. We can check whether a record is
included or not in a recordset. If is a singleton recordset and is a recordset
containing many records, we can use:

The following operations are also available:

 returns the list with the IDs of the recordset elements
 checks if it is a single record (singleton); if it's not, a

 exception is raised
 returns a filtered recordset

 returns a list of mapped values
 returns an ordered recordset

Here are some usage examples for these functions:

>>> rs0 = self.env['res.partner'].search([])
>>> len(rs0) # how many records?
40
>>> starts_A = lambda r: r.name.startswith('A')
>>> rs1 = rs0.filtered(starts_A)

ORM Application Logic – Supporting Business Processes

[163]

>>> print rs1
res.partner(8, 7, 19, 30, 3)
>>> rs2 = rs1.filtered('is_company')
>>> print rs2
res.partner(8, 7)
>>> rs2.mapped('name')
[u'Agrolait', u'ASUSTeK']
>>> rs2.mapped(lambda r: (r.id, r.name))
[(8, u'Agrolait'), (7, u'ASUSTeK')]
>> rs2.sorted(key=lambda r: r.id, reverse=True)
res.partner(8, 7)

Manipulating recordsets
We will surely want to add, remove, or replace the elements in these related fields, and so
this leads to the question: how can recordsets be manipulated?

Recordsets are immutable, meaning that their values can't be directly modified. Instead,
modifying a recordset means composing a new recordset based on existing ones.

One way to do this is using the supported set operations:

 is the union set operation, and results in a recordset with all elements
from both recordsets.

 is the addition set operation, to concatenate both recordsets into one.
It may result in a set with duplicate records.

 is the intersection set operation, and results in a recordset with only
the elements present in both recordsets.

 is the difference set operation, and results in a recordset with the
elements not present in

The slice notation can also be used, as shown in these examples:

 and retrieve the first element and the last element, respectively.
 results in a copy of the recordset without the first element. This yields the

same records as but preserves their order.

In Odoo 10, recordset manipulation preserves order. This is unlike
previous Odoo versions, where recordset manipulation was not
guaranteed to preserve the order, although addition and slicing are known
to keep record order.

ORM Application Logic – Supporting Business Processes

[164]

We can use these operations to change a recordset by removing or adding elements. Here
are some examples:

 adds the record, if not in the recordset
 removes the specific record , if present in the

recordset
 removes the last record

The relational fields contain recordset values. Many-to-one fields can contain a singleton
recordset, and to-many fields contain recordsets with any number of records. We set values
on them using a regular assignment statement, or using the and
methods with a dictionary of values. In this last case, a special syntax is used to modify to-
many fields. It is the same used in XML records to provide values for relational fields, and
is described in , Module Data, in the section Setting values for relation fields.

As an example, the syntax equivalent to the three preceding assignment examples
is:

 adds the record
 removes from the recordset

 removes the last
record

Using relational fields
As we saw earlier, models can have relational fields: many-to-one, one-to-many, and many-
to-many. These field types have recordsets as values.

In the case of many-to-one, the value can be a singleton or an empty recordset. In both
cases, we can directly access their field values. As an example, the following instructions are
correct and safe:

>>> self.company_id
res.company(1,)
>>> self.company_id.name
u'YourCompany'
>>> self.company_id.currency_id
res.currency(1,)
>>> self.company_id.currency_id.name
u'EUR'

ORM Application Logic – Supporting Business Processes

[165]

Conveniently, an empty recordset also behaves like singleton, and accessing its fields does
not return an error but just returns . Because of this, we can traverse records using
dot notation without worrying about errors from empty values, as shown here:

>>> self.company_id.country_id
res.country()
>>> self.company_id.country_id.name
False

Working with relational fields
While using the active record pattern, relational fields can be assigned recordsets.

For many-to-one fields, the value assigned must be a single record (a singleton recordset).

For to-many fields, their value can also be assigned with a recordset, replacing the list of
linked records, if any, with a new one. Here a recordset with any size is allowed.

While using the or methods, where values are assigned using
dictionaries, relational fields can't be assigned to recordset values. The corresponding ID or
list of IDs should be used.

For example, instead of user , we should rather
use user.id .

Summary
In the previous chapters, we saw how to build models and design views. Here we went a
little further, learning how to implement business logic and use recordsets to manipulate
model data.

We also saw how the business logic can interact with the user interface and learned to
create wizards that communicate with the user and serve as a platform to launch advanced
processes.

In the next chapter, we will learn about adding automated tests for our addon module, and
some debugging techniques.

88
Writing Tests and Debugging

Your Code
A good part of a developer's work is to test and debug code. Automated tests are an
inestimable tool to build and maintain robust software. In this chapter, we will learn how to
add automated tests to our addon modules, to make them more robust. Server side
debugging techniques are also presented, allowing the developer to inspect and understand
what is happening in his code.

Unit tests
Automated tests are generally accepted as a best practice in software. It does not only help
us ensure our code is correctly implemented. More importantly, it provides a safety net for
future code enhancements or rewrites.

In the case of dynamic programming languages, such as Python, since there is no
compilation step, syntax errors can go unnoticed. This makes it even more important to
have unit tests going through as many lines of code as possible.

The two goals described can provide a guiding light when writing tests. The first goal for
your tests should be to provide a good test coverage, designing test cases that go through all
lines of code. This alone will usually make good progress on the second goal to show the
functional correctness of the code.

This alone will usually make good progress on the second goal to show the functional
correctness of the code, since after this we will surely have a great starting point to build
additional test cases for non obvious use cases.

Writing Tests and Debugging Your Code

[167]

Adding unit tests
Python tests are added to addon modules by using a subdirectory. The test runner
will automatically discover tests in the subdirectories with that particular name.

The tests on our addon will be in a file. We will
need to add the file:

And this would be the basic skeleton for the :

Odoo provides a few classes to use for tests. The tests uses a different
transaction for each test, that is automatically rolled back at the end. We can also use the

, that runs all tests in a single transaction, that is rolled back only
at the end of the last test. This can be useful when you want the final state of each test to be
the initial state for the following test.

The method is where we prepare data and variables to be used. We will usually
store them as class attributes, so that they are available to be used in the test methods.

Tests should then be implemented as class methods, like . The
test cases method names must begin with a prefix. They are automatically
discovered, and this prefix is what identifies the methods implementing test cases.

Methods will be run in order of the test function names. When using the
class, a rollback will be done at the end of each. The method's docstring is shown when the
tests are run, and should provides a short description for it.

Writing Tests and Debugging Your Code

[168]

These test classes are wrappers around testcases. This is part of the Python
standard library, and you may refer to its documentation for more details at

.

To be more precise, Odoo uses a extension library, .

Writing test cases
Now let's expand the method seen in our initial skeleton. The
simplest tests we can write, run some code from the tested object, query for a result to
verify, and then use an assert to compare with an expected result.

The method will test the Todo method.
Since our setup made sure we have two open Todos, after running it we expect the wizard

 to be referencing these two records.

The docstring, at the first line of the method definition, is useful to describe the test and is
printed out when running it.

The check verifying if the test succeeded or failed is the statement. The
last parameter is optional, but is recommended since it provides a more informative
message when the test fails.

The is one of the most used, but it is just one of the assert methods
available. We should use the assert function appropriate for each case, since they will be
more helpful to understand the cause of failing tests. For example, instead of comparing the
length of , one could have prepared a recordset with the two expected tasks, and
then use:

This would give the best output in case of failure, with a full comparison of the expected
tasks versus the actual.

Writing Tests and Debugging Your Code

[169]

The documentation provides a good reference on all the
methods available at

.

To add a new test case, add to the class another method with it's implementation. Next we
will test the wizard method. This is the one doing the work when we
click on the wizard's OK button:

We start by running again. Remember that with
 tests, a rollback is done at the end of each test. So the operations done in

the previous test were reverted, and we need to again populate the wizard's Todo Task list.
Next we simulate the user filling in the new deadline field and performing the mass update.
At the end our check is to see if both Todo Tasks ended up with the same date.

Setting up tests
We should begin by preparing the data to be used in the tests.

It is convenient to perform the test actions under a specific user, in order to also test that
access control is properly configured. This is achieved using the model method.
Recordsets carry that information with them, so after being created while using ,
later operations in the same recordset will be performed using that same context.

This is the code for the method, and a few additional import statements that are also
needed:

Writing Tests and Debugging Your Code

[170]

To test our wizard, we want to have exactly two open Todos. So we start by closing any
existing Todos, so that they don't get in the way of our tests, and create two new Todos for
tests, using the Demo user. We finally create a new instance of our wizard, using the Demo
user, and assign it to , so that is available to the test methods.

Testing exceptions
Sometimes we need our tests to check if an exception was generated. A common case is
when testing if some validations are being done properly.

In our example, the method uses a exception as a way to give
information to the user. To check if an exception is raised, we place the corresponding code
inside a block.

We need to import the exception at the top of the file:

And add to the test class a method with another test case:

Writing Tests and Debugging Your Code

[171]

If the method does not raise an exception, the check will fail. If it does
raise that exception, the check succeeds and the exception raised is stored in the variable.

We use that to further inspect it. The exception message contains the number of tasks
counted, that we expect to be two. In the final statement we use to check that the
exception text contains the string.

Running tests
The tests are written, it's time to run them. For that we just need to add the
option to the Odoo server start command, while installing or upgrading (or) the
addon module.

The command would look like this:

$./odoo-bin -d todo --test-enable -i todo_wizard --stop-after-init
--addons-path="..."

Only the modules installed or upgraded will be tested. If some dependencies need to be
installed, their tests will run too. If you want to avoid this, you can install the module to test
the usual way, and then run the tests while performing an upgrade () of the module to
test.

About YAML tests
Odoo also supports a second type of tests, described using YAML data files. Originally all
tests used YAML, until more recently the based tests were introduced. While
both are supported, and many core addons still include YAML tests, the official
documentation currently does not mention the YAML tests. The last documentation on it is
available at

.

Developers with a Python background will probably feel more at home with ,
since it is a standard Python feature, while YAML tests are designed with Odoo-specific
conventions. The trend clearly is to prefer over YAML, and YAML support can
be expected to be dropped in future versions.

For these reasons, we will not do an in-depth coverage of YAML tests. It might still be
useful to have some basic understanding on how they work.

Writing Tests and Debugging Your Code

[172]

YAML tests are data files, similar to CSV and XML. In fact the YAML format was intended
to be a more compact data format that can be used in place of XML. Unlike Python tests,
where tests must be in a subdirectory, the YAML test files can be anywhere inside
the addon module. But frequently they will be inside a or subdirectory. And
while Python tests are automatically discovered, YAML tests must be declared in the

 manifest file. This is done with the key, similar to the key we
already know.

In Odoo 10 YAML tests are not used anymore, but here is an example, from the
 in the addon module:

The lines that begin with a are YAML tags, equivalent to the tag elements we find in XML
files. In the preceding code we can see a tag, equivalent to the XML ,
and a tag, that allows us to run Python code on a model, in
the example.

As you can see, YAML tests use a Odoo-specific syntax that needs learning. In comparison,
Python tests use the existing framework, only adding Odoo-specific wrapper
classes like .

Writing Tests and Debugging Your Code

[173]

Development tools
There are a few techniques developer should learn to aid them in their work. In ,
Getting Started with Odoo Development, we already introduced the user interface Developer
Mode. We also have available a server option providing some developer friendly features.
We will be describing it in more detail next. After that we will discuss another relevant
topic for developers: how to debug server side code.

Server development options
The Odoo server provides the option to enable some developer features speeding up
our development cycle, such as:

Enter the debugger when an exception is found in an addon module
Reload Python code automatically, once a Python file is saved, avoiding a manual
server restart
Read view definitions directly from the XML files, avoiding manual module
upgrades

The option accepts a comma separated list of options, although the all option will be
suitable most of the time. We can also specify the debugger we prefer to use. By default the
Python debugger, , is used. Some people might prefer to install and use alternative
debuggers. Here also supported are and .

Before Odoo 10 we had instead the option, allowing to open the
debugger on an addon module exception.

When working on Python code, the server needs to be restarted every time the code is
changed, so that it is reloaded. The command line option makes that reloading:
when the server detects that a Python file is changed, it automatically repeats the server
loading sequence, making the code change immediately effective.

To use it just add the option to the server command:

$./odoo-bin -d todo --dev=all

For this to work the Python package is required, and it should be installed as
shown here:

$ pip install watchdog

Writing Tests and Debugging Your Code

[174]

Note that this is useful only for Python code changes and view
architectures in XML files. For other changes, such as model data
structure, a module upgrade is needed, and the reload is not enough.

Debugging
We all know that a good part of a developer's work is to debug code. To do this we often
make use of a code editor that can set breakpoints and run our program step by step.

If you're using Microsoft Windows as your development workstation, setting up an
environment capable of running Odoo code from source is a nontrivial task. Also the fact
that Odoo is a server that waits for client calls, and only then acts on them, makes it quite
different to debug compared to client-side programs.

The Python debugger
While it may look a little intimidating for newcomers, the most pragmatic approach to
debug Odoo is to use the Python integrated debugger, . We will also introduce
extensions to it that provide a richer user interface, similar to what sophisticated IDEs
usually provide.

To use the debugger, the best approach is to insert a breakpoint on the code we want to
inspect, typically a model method. This is done by inserting the following line in the desired
place:

Now restart the server so that the modified code is loaded. As soon as the program
execution reaches that line, a Python prompt will be shown in the terminal window
where the server is running, waiting for our input.

The option is not needed to use manually set Python debugger
breakpoints.

This prompt works as a Python shell, where you can run any expression or command in the
current execution context. This means that the current variables can be inspected and even
modified. These are the most important shortcut commands available:

Writing Tests and Debugging Your Code

[175]

 (help) displays a summary of the pdb commands available
 (print) evaluates and prints an expression

 (pretty print) is useful to print data structures such as dictionaries or lists
 (list) lists the code around the instruction to be executed next
 (next) steps over to the next instruction
 (step) steps into the current instruction
 (continue) continues execution normally
 (up) move up the execution stack
 (down) move down in the execution stack

The Odoo server also supports the option. If activated, when an exception is
raised the server enters a post mortem mode at the corresponding line. This is a prompt,
such as the one described earlier, allowing us to inspect the program state at the moment
where the error was found.

While has the advantage of being available out-of-the-box, it can be quite terse, and a
few more comfortable options exist.

A sample debugging session
Let's see how a simple debugging session looks like. We can start by adding debugger
breakpoint in the first line of the wizard method:

Now restart the server, open a To-do Tasks Wizard form, and click on the Get All button.
This will trigger the wizard method on the server, and the web client
will stay in a Loading state, waiting for the server response. Looking at the terminal
window where the server is running, you will see something similar to this:

This is the debugger prompt, and the two first lines give you information about where
you are in the Python code execution. The first line informs the file, line number and
function name you are in, and the second line is the next line of code to be run.

Writing Tests and Debugging Your Code

[176]

During a debug session, server log messages can creep in. These won't harm our
debugging, but they can disturb us. We can avoid that by reducing the verbosity of the log
messages. Most of the time these log messages will be from the module. We can
silence them using the option . If this is not enough,
we can lower the general log level, using .

If we type now, we will see a quick reference of the commands available. Typing shows
the current line of code and the surrounding lines of code.

Typing will run the current line of code and move to the next. If we just press Enter, the
previous command will be repeated. So do that three times and we should be at the
method's return statement.

We can inspect the content on any variable, such as the used in this method.
and typing or will show the representation of that
variable. Any Python expressions are allowed, even variable assignments. For example, to
show a friendlier list with the Task names we could use:

Running the return line, using once more, we will be shown the returning values of the
function. Something like this:

The debugging session will continue on the caller's lines of code, but we can finish it and
continue normal execution typing .

Alternative Python debuggers
While has the advantage of being available out of the box, it can be quite terse, and a
few more comfortable options exist.

The Iron Python debugger, , is popular choice that uses the same commands as ,
but adds improvements such as tab completion and syntax highlighting, for a more
comfortable usage. It can be installed with:

$ sudo pip install ipdb

Writing Tests and Debugging Your Code

[177]

And a breakpoint is added with the line:

Another alternative debugger is . It also supports the same commands as and
works in text-only terminals, but uses a graphical display similar to what you can find in an
IDE debugger. Useful information, such as the variables in the current context and their
values, is readily available in the screen in their own windows:

It can be installed either through the system package manager or through , as shown
here:

$ sudo apt-get install python-pudb # using OS packages
$ sudo pip install pudb # using pip, possibly in a virtualenv

Adding a breakpoint is done just the way you would expect:

Writing Tests and Debugging Your Code

[178]

 Printing messages and logging
Sometimes we just need to inspect the values of some variables or check if some code blocks
are being executed. A Python statement can do the job perfectly without stopping
the execution flow. As we are running the server in a terminal window, the printed text will
be shown in the standard output. But it won't be stored to the server log if it's being written
to a file.

Another option to keep in mind is to set debug level log messages at sensitive points of our
code if we feel that we might need them to investigate issues in a deployed instance. It
would only be needed to elevate that server logging level to debug and then inspect the log
files.

Inspecting running processes
There are also a few tricks that allow us to inspect a running Odoo process.

For that we first need to find the corresponding process ID (PID). To find the PID run
another terminal window and type:

$ ps ax | grep odoo-bin

The first column in the output is the PID for that process. Take a note on the PID for the
process to inspect, since we will need it next.

Now we want to send a signal the process. The command used to do that is kill. By default
it sends a signal to terminate a process, but it can also send other friendlier signals.

Knowing the PID for our running Odoo server process, we can print the traces of the code
currently being executed using:

$ kill -3 <PID>

If we look at the terminal window or log file where the server output is being written, we
will see the information on the several threads being run and detailed stack traces on what
line of code they are running.

We can also see a dump of the cache/memory statistics using:

$ kill -USR1 <PID>

Writing Tests and Debugging Your Code

[179]

Summary
Automated tests are a valuable practice, both for business applications in general, and for
ensuring the code robustness in a dynamic programming language, such as Python.

We learned the basic principles of how to add and run tests for a addon module. We also
discussed some techniques to help us debug our code.

In the next chapter, we will go deeper into the views layer, and will discuss the kanban
views.

99
QWeb and Kanban Views

QWeb is a template engine used by Odoo. It is XML-based and is used to generate HTML
fragments and pages. QWeb was first introduced in version 7.0 to enable richer kanban
views and, since version 8.0, is also used for report design and CMS website pages.

Here you will learn about the QWeb syntax and how to use it to create your own kanban
views and custom reports. Let's get started by learning more about kanban boards.

About kanban boards
Kanban is a Japanese word used to represent a work queue management method. It takes
inspiration from the Toyota Production System and Lean Manufacturing. It has become
popular in the software industry with the adoption of Agile methodologies.

The kanban board is a tool to visualize the work queue. The board is organized in columns
representing the stages of the work process. Work items are represented by cards placed on
the appropriate column of the board. New work items start from the leftmost column and
travel through the board until they reach the rightmost column, representing completed
work.

The simplicity and visual impact of kanban boards make them excellent to support simple
business processes. A basic example of a kanban board can have three columns, as shown in
the following image: To Do, Doing, and Done.

QWeb and Kanban Views

[181]

It can, of course, be extended to whatever specific process steps we may need:

Kanban views
For many business use cases, a kanban board can be a more effective way to manage the
corresponding process than the typically heavier workflow engine. Odoo supports kanban
board views, along with the classic list and form views. This makes it easy to implement
this type of view. Let's learn how to use them.

In form views, we use mostly specific XML elements, such as and , and
few HTML elements, such as or . With kanban views, it's quite the opposite;
they are HTML-based templates and support only two Odoo-specific elements,
and .

QWeb and Kanban Views

[182]

The HTML is dynamically generated using QWeb templates. The QWeb engine processes
special XML tags and attributes to produce the final HTML to be presented in the web
client. This brings a lot of control over how to render the content but also makes view
design more complex.

The kanban view design is quite flexible, so we'll do our best to prescribe a straightforward
way for you to quickly build your kanban views. A good approach is to find an existing
kanban view similar to what you need, and inspect it to for ideas on how to build yours.

We can see two different ways to use kanban views. One is a card list. It is used in places
like contacts, products, employee directories or apps.

Here is how the Contacts kanban view looks:

But this is not a true kanban board. A kanban board is expected to have the cards organized
in columns, and of course, the kanban view also supports that layout. We can see examples
in the Sales | My Pipeline or in Project Tasks.

QWeb and Kanban Views

[183]

Here is how the Sales | My Pipeline looks:

The most striking difference between the two is the kanban board column organization of
the cards. This is achieved by the Group By feature, similar to what the list views provide.
Usually, the grouping is done on a stage field. One very useful feature of kanban views is
that it supports drag and dropping cards between columns, automatically assigning the
corresponding value to the field the view is grouped by.

Looking at the cards in both examples, we can see some differences. In fact, their design is
quite flexible, and there is not a single way to design a kanban card. But these two examples
can provide a starting point for your designs.

The Contact cards basically have an image at the left-hand side, and a bold title in the main
area, followed by a list of values. The My Pipeline cards have a bit more structure. The
main card area also has a title followed by a list of relevant information as well as a footer
area, in this case with a priority widget on the left-hand side, and the responsible user at the
right-hand side. It is not visible in the image, but the cards also have an options menu at the
top-right, shown when hovering the mouse pointer over it. This menu allows, for example,
to change the background color of the card.

We will be using this more elaborate structure as a model for the cards on our Todo kanban
board.

QWeb and Kanban Views

[184]

Designing kanban views
We will be adding the kanban view to the Todo tasks with a new addon module. It would
be simpler to add it directly to the module. However, for a clearer explanation, we
will use a new module and avoid too many, possibly confusing, changes in the already
created files.

We will name this new addon module as and create the usual initial files.
Edit the descriptor file as follows:

Also add an empty file, to make the directory Python
importable, as required for Odoo addon modules.

Next, create the XML file where our shiny new kanban view will go and set kanban as the
default view on the to-do task's window action. This should be in

, containing the following code:

<!-- Empty for now, but the Kanban will go here! -->

Now we have the basic skeleton for our module in place.

Before starting with the kanban views, we need to add a couple of fields to the to-do tasks
model.

QWeb and Kanban Views

[185]

Priority, kanban state, and color
Other than stages, a few more fields are useful and frequently used in kanban boards.

 lets users organize their work items, signaling what should be
addressed first.

 signals whether a task is ready to move to the next stage or is
blocked for some reason. At the model definition layer, both are selection fields.
At the view layer, they have specific widgets for them that can be used on form
and kanban views.

 is used to store the color the kanban card should display, and can be set
using a color picker menu available on kanban views.

To add these fields to our model, we will add a file.

But first, we will need to make it importable, and edit the file
to import the subdirectory:

Then create the file with:

Now let's edit the file:

Now we can work on the kanban view.

QWeb and Kanban Views

[186]

Kanban card elements
The kanban view architecture has a top element and the following basic
structure:

<!-- Fields to use in expressions... -->

<!-- (...add other used fields). -->

<!-- HTML QWeb template... -->

Notice the attribute used in the element. We
used it so that, by default, the kanban cards are grouped by stage like kanban boards
should. In simple card list kanbans, such as the one in Contacts, we don't need this and
would instead just use a simple opening tag.

The top element supports a few interesting attributes:

 sets the field to use for the default column groups.
 sets a default order to use for the kanban items.

 disables the quick create option (the large plus sign),
available at the top of each column to create new items by providing just a title
description. The false value is a JavaScript literal, and must be in lowercase.

 adds a CSS class to the root element of the rendered kanban view. A
relevant class is , making columns somewhat more
compact than the default. Additional classes may be made available by module
provided custom CSS.

We then see a list of fields used in templates. To be exact, only fields used exclusively in
QWeb expressions need to be declared here, to ensure that their data is fetched from the
server.

QWeb and Kanban Views

[187]

Next, we have a element, containing one or more QWeb templates to
generate the used HTML fragments. We must have one template named , that
will render the kanban cards. Additional templates can be also added, usually to define
HTML fragments to be reused in the main template.

These templates use standard HTML and the QWeb templating language. QWeb provides
special directives, that are processed to dynamically generate the final HTML to be
presented.

Odoo uses the Twitter Bootstrap 3 web style library, so those style classes
are generally available wherever HTML can be rendered. You can learn
more about Bootstrap at

We will now have a closer look at the QWeb templates to use in the kanban views.

The kanban card layout
The main content area of a kanban card is defined inside the template. This
content area can also have a footer sub-container.

For a single footer, we would use a element at the bottom of the kanban box, with
the CSS class. This class will automatically split its inner elements with
flexible spaces, making explicit left- and right- alignment inside it superfluous.

A button opening an action menu may also be featured at the card's top-right corner. As an
alternative, the Bootstrap provided classes and can be used to add
left or right aligned elements anywhere in the card, including in the
footer.

Here is our first iteration on the QWeb template for our kanban card:

<!-- Top-right drop down menu here... -->

<!-- Left hand footer... -->

QWeb and Kanban Views

[188]

<!-- Right hand footer... -->

This lays out the overall structure for the kanban card. You may notice that the field
is being used in the top element to dynamically set the card's color. We will explain
the QWeb directive in more detail in one of the next sections.

Now let's work on the main content area, and choose what to place there:

<!-- Content elements and fields go here... -->

Most of this template is regular HTML, but we also see the element used to render
field values, and the attribute used in regular form view buttons, used here in an
anchor tag.

On the left-hand footer, we will insert the priority widget:

<!-- Left hand footer... -->

Here we can see the field added, just like we would do in a form view.

QWeb and Kanban Views

[189]

On the right-hand footer we will place the kanban state widget and the avatar for the owner
of the to-do task:

<!-- Right hand footer... -->

The kanban state is added using a element, just like in regular form views. The
user avatar image is inserted using the HTML tag. The image content is dynamically
generated using the QWeb directive, that we will explain in a moment.

Sometimes we want to have a small representative image to be shown on the card, like in
the Contacts example. For reference, this can be done by adding the following as the first
content element:

Adding a kanban card option menu
Kanban cards can have an option menu, placed at the top-right. Usual actions are to edit or
delete the record, but it's possible to have any action that can be called from a button. We
also have a widget to set the card's color available.

The following is a baseline HTML code for the option menu to be added at the top of the
 element:

<!-- Top-right drop down menu here... -->

<!-- Edit and Delete actions, if available: -->

<!-- Call a server-side Model method: -->

QWeb and Kanban Views

[190]

<!-- Color picker option: -->

The drop-down menu is basically an HTML list of the elements. Some options, such as
Edit and Delete, are made available only if certain conditions are met. This is done with the

 QWeb directive. Later in this chapter, we explain this and other QWeb directives in
more detail.

The global variable represents the current JavaScript object
responsible for the rendering of the current kanban card. Two particularly useful properties
are and to inspect if the actions are available.

We can also see how to show or hide an option depending on the record field values. The
Set as Done option will only be displayed if the field is not set.

The last option adds the color picker special widget using the data field to select and
change the card's background color.

Actions in kanban views
In QWeb templates, the tag for links can have a attribute. It sets the type of action
the link will perform so that links can act just like the buttons in regular forms. So in
addition to the elements, the tags can also be used to run Odoo actions.

As in form views, the action type can be or , and it should be accompanied
by a attribute, identifying the specific action to execute. Additionally, the following
action types are also available:

 opens the corresponding form view
 opens the corresponding form view directly in edit mode

 deletes the record and removes the item from the kanban view

QWeb and Kanban Views

[191]

The QWeb templating language
The QWeb parser looks for special directives in the templates and replaces them with
dynamically generated HTML. These directives are XML element attributes, and can be
used in any valid tag or element, such as , , or .

Sometimes we want to use a QWeb directive but don't want to place it in any of the XML
elements in our template. For those cases, we have a special element that can have
QWeb directives, such as a or a , but is silent and won't have any output
on the final XML/HTML produced.

The QWeb directives will frequently make use of evaluated expressions to produce
different results depending on the current record values. There are two different
QWeb implementations: client-side JavaScript, and server-side Python.

 The reports and website pages use the server-side Python implementation. On the other
hand, kanban views use the client-side JavaScript implementation. This means that the
QWeb expression used in kanban views should be written using the JavaScript syntax, not
Python.

When displaying a kanban view, the internal steps are roughly as follows:

Get the XML for the templates to render.1.
Call the server method to get the data for the fields in the templates.2.
Locate the template and parse it using QWeb to output the final3.
HTML fragments.
Inject the HTML in the browser's display (the DOM).4.

This is not meant to be technically exact. It is just a mind map that can be useful to
understand how things work in kanban views.

Next, we will learn about QWeb expressions evaluation and explore the available QWeb
directives, using examples that enhance our to-do task kanban card.

The QWeb JavaScript evaluation context
Many of the QWeb directives use expressions that are evaluated to produce some result.
When used from the client-side, as is the case for kanban views, these expressions are
written in JavaScript. They are evaluated in a context that has a few useful variables
available.

QWeb and Kanban Views

[192]

A object is available, representing the record being rendered, with the fields
requested from the server. The field values can be accessed using either the or
the attributes:

 is the value returned by the server method, so it's more
suitable to use in condition expressions.

 is formatted according to the user settings, and is meant to be used for
display in the user interface. This is typically relevant for date/datetime and
float/monetary fields.

The QWeb evaluation context also has references available for the JavaScript web client
instance. To make use of them, a good understanding of the web client architecture is
needed, but we won't be able to go into that in detail. For reference purposes, the following
identifiers are available in QWeb expression evaluation:

 is a reference to the current widget object, responsible
for the rendering of the current record into a kanban card. It exposes some useful
helper functions we can use.

 is a shortcut for and provides access to the fields
available, using dot notation.

 indicates if the current view is in read mode (and not in edit
mode). It is a shortcut for .

 is a reference to the full web client instance.

It is also noteworthy that some characters are not allowed inside expressions. The lower
than sign () is such a case. This is because of the XML standard, where such characters
have special meaning and shouldn't be used on the XML content. A negated is a valid
alternative, but the common practice is to use the following alternative symbols that are
available for inequality operations:

 is for less than
 is for less than or equal to

 is for greater than
 is for greater than or equal to

QWeb and Kanban Views

[193]

Using t-attf for attributes string substitution
Our kanban card is using the QWeb directive to dynamically set a class on the top

 element so that the card is colored depending on the field value. For this, the
 QWeb directive was used.

The directive dynamically generates tag attributes using string substitution. This
allows for parts of larger strings generated dynamically, such as a URL address or CSS class
names.

The directive looks for expression blocks that will be evaluated and replaced by the result.
These are delimited either by and or by and . The content of the blocks can be
any valid JavaScript expression and can use any of the variables available for QWeb
expressions, such as and .

In our case, we also used the JavaScript function, specially provided to
map color index numbers into the CSS class color names.

As a more elaborate example, we can use this directive to dynamically change the color of
the Deadline Date, so that overdue dates are shown in red.

For this, replace in our kanban card with this:

This results in either or
, depending on the deadline date. Please note that,

while the CSS class is available in kanban views, the
 CSS class does not exist and was used to better explain the point.

The lower than sign, , is not allowed in the expressions, and we chose to
work around this by using a negated greater than comparison. Another
possibility would be to use the (lower than) escape symbol instead.

QWeb and Kanban Views

[194]

Using t-att for dynamic attributes
The QWeb directive dynamically generates an attribute value by evaluating an
expression. Our kanban card uses it to dynamically set some attributes on the tag.

The element is dynamically rendered using:

The field returns its value representation as it should be shown on the screen, for
many-to-one fields, this is usually the related record's value. For users, this is the
username. As a result, when hovering the mouse pointer over the image, you will see the
corresponding username.

The tag is also dynamically generated, to provide the image corresponding to the
responsible user. The image data is provided by the helper JavaScript
function, :

The function parameters are: the model to read the image from, the field name to read, and
the ID of the record. Here we used , to get the user's database ID instead of its
representation text.

It doesn't stop there, and and can be made to render any
attribute, as the name of the generated attribute is taken from the suffix used.

Using t-foreach for loops
A block of HTML can be repeated by iterating through a loop. We can use it to add the
avatars of the task followers to the task's kanban card.

Let's start by rendering just the Partner IDs of the task, as follows:

The directive accepts a JavaScript expression evaluating to a collection to
iterate. In most cases, this will be just the name of a to-many relation field. It is used with a

 directive to set the name to be used to refer to each item in the iteration.

QWeb and Kanban Views

[195]

The directive used next evaluates the provided expression, just the variable
name in this case, and renders it as safely escaped HTML.

In the previous example, we loop through the task followers, stored in the
 field. Since there is limited space on the kanban card, we could have

used the JavaScript function to limit the number of followers to display, as shown
in the following:

The variable holds each iteration's value, a Partner ID in this case. With this, we can
rewrite the follower's loop as follows:

For example, this could be added next to the responsible user image, in the right-hand
footer.

A few helper variables are also available. Their name has as prefix the variable name
defined in . In our example, we used , so the helper variables available are as
follows:

 is the iteration index, starting from zero
 is the number of elements of the collection

 is true on the first element of the iteration
 is true on the last element of the iteration
 is true on even indexes

 is true on odd indexes
 is either or , depending on the current index

 represents the object being iterated over
 when iterating through a dictionary, , holds the value

(holds the key name)

QWeb and Kanban Views

[196]

For example, we could make use of the following to avoid a trailing comma on our ID list:

Using t-if for conditional rendering
Our kanban view used the directive in the card option menu to make some options
available depending on some conditions. The directive expects an expression to be
evaluated in JavaScript when rendering kanban views in the client-side. The tag and its
content will be rendered only if the condition evaluates to true.

As another example, to display the task effort estimate in the card kanban, only if it has a
value, add the following after the field:

We used a element so that if the condition is false, the element produces
no output. If it is true, only the contained element is rendered to the output. Notice
that the condition expression used the symbol instead of , to represent the greater than
operator.

Using t-esc and t-raw to render values
We used the element to render the field content. But field values can also be
presented directly without a tag.

The directive evaluates an expression and renders it as an HTML-escaped value, as
shown in the following:

QWeb and Kanban Views

[197]

In some cases, and if the source data is ensured to be safe, can be used to render the
field raw value without any escaping, as shown in the following example:

For security reasons, it is important to avoid using as much as
possible. Its usage should be strictly reserved for outputting HTML data
that was specifically prepared without any user data in it, or where any
user data was escaped explicitly for HTML special characters.

Using t-set to set values on variables
For more complex logic, we can store the result of an expression into a variable to use it
later in the template. This is to be done using the directive, naming the variable to set
followed by the directive with the expression calculating the value to assign.

As an example, the following code renders missed deadlines in red, just as in the previous
section, but uses a variable for the CSS class to use, as shown in the
following:

Variables can also be assigned HTML content to a variable, as in the following example:

The CSS class uses the Entypo pictogram font. The HTML representation of the
calendar sign is stored in a variable that can then be used when needed in the template. The
Font Awesome icon set is also available out of the box, and could have been used.

QWeb and Kanban Views

[198]

Using t-call to insert other templates
QWeb templates can be reusable HTML snippet, that can be inserted in other templates.
Instead of repeating the same HTML blocks over and over again, we can design building
blocks to compose more complex user interface views.

Reusable templates are defined inside the tag and identified by a top element
with a other than . These other templates can then be included using
the directive. This is true for the templates declared alongside in the same kanban
view, somewhere else in the same addon module, or in a different addon.

The follower avatar list is something that could be isolated in a reusable snippet. Let's
rework it to use a sub-template. We should start by adding another template to our XML
file, inside the element, after the node, as
shown in the following:

Calling it from the main template is quite straightforward. Instead of the
 element containing the directive, we should use the following:

To call templates defined in other addon modules, we need to use the full
identifier, as we do with the other views. For instance, this snippet can be referred using the
full identifier .

The called template runs in the same context as the caller, so any variable names available
in the caller are also available when processing the called template.

A more elegant alternative is to pass arguments to the called template. This is done by
setting variables inside the tag. These will be evaluated and made available in the
sub-template context only, and won't exist in the caller's context.

QWeb and Kanban Views

[199]

We could use this to have the maximum number of follower avatars set by the caller instead
of being hard-coded in the sub-template. First, we need to replace the fixed value, 3 with a
variable, for example:

Then, define that variable's value when performing the sub-template call as follows:

The entire content inside the element is also available to the sub-template through
the magic variable . Instead of argument variables, we can define an HTML code fragment
that can be used in the sub-template with .

More ways to use t-attf
We have gone through the most important QWeb directives, but there are a few more we
should be aware of. We'll do a short explanation of them.

We have seen the and style dynamic tag attributes.
Additionally, the fixed directive can be used. It accepts either a key-value dictionary
mapping or a pair (a two-element list).

Use the following mapping:

This results in the following:

Use the following pair:

QWeb and Kanban Views

[200]

This results in the following:

Inheritance on kanban views
The templates used in kanban views and reports are extended using the regular techniques
used for other views, for example using XPath expressions. See , Inheritance
Extending Existing Applications, for more details.

A common case is to use the elements as selector, to then add other elements
before or after them. In the case of kanban views, the same field can be declared more than
once, for example, once before the templates, and again inside the templates. Here the
selector will match the first field element and won't add our modification inside the
template, as intended.

To work around this, we need to use XPath expressions to make sure that the field inside
the template is the one matched. For example:

<xpath expr="//t[@t-name='kanban- box']//field[@name='display_name']"

In the above example, the XPath looks for a element
inside a element. This rules out the same field element outside
of the section.

For these, more complex, XPath expressions, we can explore the correct syntax using some
command-line tools. The command-line utility is probably already available on
your Linux system, and has an option to perform queries on XML files.

Another option, providing nicer outputs, is the command from the
 Debian/Ubuntu package:

$ sudo apt-get install libxml-xpath-perl
$ xpath -e "//record[@id='res_partner_kanban_view']" -e

QWeb and Kanban Views

[201]

"//field[@name='display_name']]" /path/to/*.xml

Custom CSS and JavaScript assets
As we have seen, kanban views are mostly HTML and make heavy use of CSS classes. We
have been introducing some frequently used CSS classes provided by the standard product.
But for best results, modules can also add their own CSS.

We won't go into detail here on how to write CSS code, but it's relevant to explain how a
module can add its own CSS (and JavaScript) web assets. Odoo assets for the backend are
declared in the template. To add our module assets, we should extend
that template. The XML file for this is usually placed inside a module subdirectory.

The following is a sample XML file to add a CSS and a JavaScript file to the
module, and it could be at :

As usual, it should be referenced in the descriptor file. Notice that the
assets are located inside a subdirectory. While this is not required, it is a
generally used convention.

Summary
You learned about kanban boards and how to build kanban views to implement them. We
also introduced QWeb templating and how it can be used to design kanban cards. QWeb is
also the rendering engine powering the website CMS, so it's growing in importance in the
Odoo toolset. In the next chapter, we will keep using QWeb, but on the server side, to create
our custom reports.

110
Creating QWeb Reports

Reports are an invaluable feature for business apps. The built-in QWeb reports engine,
available since version 8.0, is the default report engine. Reports are designed using QWeb
templates to produce HTML documents that can then be converted to PDF form.

The Odoo built-in report engines have undergone significant changes. Before version 7.0
reports were based on the ReportLab library and used a specific markup syntax, RML. In
version 7.0, the Webkit report engine was included in the core, allowing for reports to be
designed using regular HTML instead. Finally, in version 8.0 this concept was taken a little
further, and the QWeb templates became the main concept behind the built-in reporting
engine.

This means we can conveniently leverage what we have learned about QWeb and apply it
to create business reports. In this chapter, we will be adding a report to our To Do app, and
will review the most important techniques to use with QWeb reports , including report
computations, such as totals, translation and print paper formats.

But before we start, we must make sure that we have installed the recommended version of
the utility used to convert HTML into PDF documents.

Installing wkhtmltopdf
To correctly generate reports, the recommended version of the library needs
to be installed. Its name stands for Webkit HTML to PDF. Odoo uses it to convert a
rendered HTML page into a PDF document.

Creating QWeb Reports

[203]

Older versions of the library are known to have issues, such as not printing
page headers and footers, so we need to be picky about the version to use. For version 9.0,
at the time of writing the recommended version is 0.12.1. Unfortunately, the odds are that
the packaged version provided for your host system, Debian/Ubuntu or other, is not
adequate. So we should download and install the package recommended for our OS and
CPU architecture. The download links can be found at

.

We should first make sure that we don't have an incorrect version already installed in our
system:

$ wkhtmltopdf --version

If the above reports a version other than the one we want, we should uninstall it. On a
Debian/Ubuntu system we can use:

$ sudo apt-get remove --purge wkhtmltopdf

Next we need to download the appropriate package for our system and install it. Check the
correct file name at . For Ubuntu
14.04 LTS (Trusty) 64 bits, the download command would be like this:

$ wget
http://download.gna.org/wkhtmltopdf/0.12/0.12.1/wkhtmltox-0.12.1_linux-trus
ty-amd64.deb -O /tmp/wkhtml.deb

Next we should install it. Installing a local file does not automatically install
dependencies, so a second step will be needed to do that and complete the installation:

$ sudo dpkg -i wkhtml.deb
$ sudo apt-get -f install

Now we can check if library is correctly installed, and confirm it's version
number is the one we want:

$ wkhtmltopdf --version
wkhtmltopdf 0.12.1 (with patched qt)

After this, the Odoo server start sequence won't display the You need Wkhtmltopdf to
print a pdf version of the report's info message.

Creating QWeb Reports

[204]

Creating business reports
Usually we would implement the report in our To Do app addon module. But for
learning purposes, we will create a new addon module just for our report.

Our report will look like this:

We will name this new addon module . The first thing to do is to create an
empty file and the manifest file:

The file can start by declaring the new report as follows:

Creating QWeb Reports

[205]

The tag is a shortcut to write data to the model,
which is a particular type of client action. Its data is available in the Settings | Technical |
Reports menu option.

During the design of the report, you might prefer to
leave , and change it back to file
once finished. This will make it quicker to generate and easier to inspect
the HTML result from the OWeb template.

After installing this, the to-do task form view will display a Print button at the top, to the
left of the More button, containing this option to run the report.

It won't work right now, since we haven't defined the report yet. This will be a QWeb
report, so it will use a QWeb template. The attribute identifies the template to be used.
Unlike other identifier references, the module prefix in the attribute is required. We
must use the full reference .

QWeb report templates
The reports will usually follow a basic skeleton, as shown in the following. This can be
added to the file, just after the element.

The most important elements here are the directives using standard report
structures. The template does the basic setup to support an
HTML document. The template handles the report header and
footer, using the corresponding setup from the appropriate company. As an alternative, we
can use template instead, which uses only a basic header.

Creating QWeb Reports

[206]

Now we have in place, the basic skeleton for our module and report view. Notice that, since
reports are just QWeb templates, inheritance can be applied, just like in the other views.
QWeb templates used in reports can be extended using the regular inherited views with
XPATH expressions.

Presenting data in reports
Unlike Kanban views, the QWeb templates in reports are rendered server side, and use a
Python QWeb implementation. We can see this as two implementations of the same
specification, and there are some differences that we need to be aware of.

To start with, QWeb expressions are evaluated using Python syntax, not JavaScript. For the
simplest expressions, there may be little or no difference, but more complex operations will
probably be different.

The way expressions are evaluated is also different. For reports, we have the following
variables available:

 is an iterable collection with the records to print
 is a list of the IDs of the records to print

 identifies the model of the records, for example
 is is a reference to Python's time library
 is the record for the user running the report

 is the record for the current user's company

The report content is written in HTML, field values can be referenced using the
attribute, and it can be complemented with the attribute to use a specific
widget to render the field content.

Now we can start designing the page content for our report:

Creating QWeb Reports

[207]

 <!-- Data Row Content -->

The layout of the content can use the Twitter Bootstrap HTML grid system. In a nutshell,
Bootstrap has a grid layout with 12 columns. A new row can be added using

. Inside a row, we have cells, each spanning though a certain number of
columns, that should take up the 12 columns. Each cell can be defined with row

, where N is the number of columns it spans.

A complete reference for Bootstrap, describing these and other style
elements, can be found at .

Here we are adding a header row with titles, and then we have a loop, iterating
through each record, and rendering a row for each one.

Since the rendering is done server-side, records are objects and we can use dot notation to
access fields from related data records. This makes it easy to follow through relational fields
to access their data. Notice that this is not possible in client-side rendered Qweb,views, such
as the web client kanban views.

This is the XML for the content of the record rows:

Creating QWeb Reports

[208]

As we can see, fields can be used with additional options. These are very similar to the
 attribute used on form views, as seen in , Views Designing the User

Interface, used with an additional to set the widget to use to render the field.

An example is the monetary widget, used above, next to the deadline date.

A more sophisticated example is the widget, used to format addresses. We used
the company address, , since it has some default data and we
can immediately see the rendered address. But it would make more sense to use the
assigned user's address, . By default the widget displays
addresses with some pictograms, such as a phone icon. The option we
used disables them.

Rendering images
The last column of our report will feature the list of followers, with the avatars. We will use
the Bootstrap component and a loop through the followers to render each one
of them:

Creating QWeb Reports

[209]

The content of binary fields is provided in a representation. The element can
directly accept this type of data for the attribute. Thus we can use the
QWeb directive to dynamically generate each of the images.

Summary totals and running totals
A common need in reports is to provide totals. This can be done using Python expressions
to compute those totals.

After the closing tag of the ,we will add a final row with the totals:

The Python statement is used to count the number of elements in a collection. Totals
can be computed using value over a list of values. In the example preceding, we use
a list comprehension to produce a list of values out of the recordset. You can think of
list comprehensions like an embedded loop.

Sometimes we want to perform some computations as we go along with the report. For
example, a running total, with the total up to the current record. This can be implemented
with to define an accumulating variable, and then update it on each row.

To illustrate this, we can compute the accumulated number of followers. We should start by
initializing the variable, just before the loop on the recordset, using:

Creating QWeb Reports

[210]

And then, inside the loop, add the record's number of followers to the variable. We will
choose to do this right after presenting the list of followers, and will also print out the
current total on every line:

Defining paper formats
At this point our report looks good in HTML, but it doesn't print out nicely on a PDF page.
We might get some better results using a landscape page. So we need to add this paper
format.

At the top of the XML file, add this record:

It is a copy of the European A4 format, defined in ,
 file, but changing the orientation from Portrait to Landscape.

The defined paper formats can be seen from the web client through the menu Settings |
Technical | Reports | Paper Format.

Now we can use it in our report. The default paper format is defined in the company setup,
but we can also specify the paper format to be used by a specific report. That is done using a

 attribute in the report action.

Creating QWeb Reports

[211]

Let's edit the action used to open our report, to add this attribute:

The attribute on the tag was added in version
9.0. For 8.0 we need to use a element to add a report action with
a value.

Enabling language translation in reports
To enable translations for a report, it needs to be called from a template, using a

 element with a attribute.

The attribute should evaluate to a language code, such as or . It needs the
name of the field where the language to use can be found. This will frequently be the
language of the Partner the document is to be sent to, stored at field. In
our case, we don't have a Partner field, but we can use the responsible user, and the
corresponding language preference is in .

The function expects a template name, and will render and translate it. This means that we
need to define the page content of our report in a separate template, as shown in the
following:

Creating QWeb Reports

[212]

Reports based on custom SQL
The report we built was based on a regular recordset. But in some cases we need to
transform or aggregate data in ways that are not easy when processing data on the fly, such
as while rendering the report.

One approach for this is to write a SQL query to build the dataset we need, expose those
results through a special Model, and have our report work based on a recordset.

For this, we will create a file with this code:

For this file to be loaded we need to add a line to the top
 file, and to the

 file.

Creating QWeb Reports

[213]

The attribute is used to override the database table automatic creation, providing an
SQL for that. We want it to create a database view to provide the data needed for the report.
Our SQL query is quite simple, but the point is that we could use any valid SQL query for
our view.

We also mapped the fields we need with ORM field types, so that they are available on
recordsets generated on this model.

Next we can add a new report based on this model, :

Creating QWeb Reports

[214]

For even more complex cases, we can use a different solution: a wizard. For this we should
create a transient model with related lines, where the header includes report parameters,
introduced by the user, and the lines will have the generated data to be used by the report.
These lines are generated by a model method that can contain whatever logic we may
need. It is strongly recommended to get inspiration from an existing similar report.

Summary
In the previous chapter we learned about QWeb, and how to use it to design a Kanban
view. In this chapter we learned about the QWeb report engine, and the most important
techniques to build reports with the QWeb templating language.

In the next chapter, we will keep working with QWeb, this time to build website pages. We
will also learn to write web controllers, providing richer features to our web pages.

111
Creating Website Frontend

Features
Odoo began as a backend system, but the need for a frontend interface was soon felt. The
early portal features, based on the same interface as the backend, were not very flexible nor
mobile device-friendly.

To solve this gap, version 8 introduced new website features, adding a Content
Management System (CMS) to the product. This would allow us to build beautiful and
effective frontends without the need to integrate a third-party CMS.

Here we will learn how to develop our own frontend oriented addon modules, leveraging
the website feature provided by Odoo.

Roadmap
We will create a website page listing our To-do Tasks, allowing us to navigate to a detailed
page for each existing task. We also want to be able to propose new To-do Tasks through a
web form.

With this, we will be able to cover the essential techniques for website development:
creating dynamic pages, passing parameters to another page, creating forms and handling
their validation, and computation logic.

Creating Website Frontend Features

[216]

But first, we will introduce the basic website concepts with a very simple Hello World web
page.

Our first web page
We will create an addon module for our website features. We can call it . To
introduce the basics of Odoo web development, we will implement a simple Hello World
web page. Imaginative, right?

As usual, we will start creating it's manifest file. Create the
 file with:

We are building on top of the addon module, so that we have all the features
available added to the To-do Tasks model throughout the book.

Notice that right now we are not depending on the addon module. While
 provides a useful framework to build full featured websites, the basic web

capabilities are built into the core framework. Let's explore them.

Hello World!
To provide our first web page, we will add a controller object. We can begin by having its
file imported with the module:

First add a file with following line:

And then add a file with following line:

Creating Website Frontend Features

[217]

Now add the actual file for the controller, , with
the following code:

The module provides the Odoo web-related features. Our controllers,
responsible for page rendering, should be objects inheriting from the

 class. The actual name used for the class is not important; here
we chose to use .

Inside the controller class we have methods, that match routes, does some processing, and
then returns a result; the page to be shown to the user.

The decorator is what binds a method to a URL route. Our example
uses the route. Navigate to and you will be
greeted with a Hello World message. In this example the processing performed by the
method is quite trivial: it just returns a text string with the HTML markup for the Hello
World message.

You probably noticed that we added the argument to the route. This is
needed for the page to be available to non-authenticated users. If we remove it, only
authenticated users can see the page. If no session is active, the login screen will be shown
instead.

Hello World! with a Qweb template
Using Python strings to build HTML will get boring very fast. QWeb templates do a much
better job at that. So let's improve our Hello World web page to use a template instead.

QWeb templates are added through XML data files, and technically they are a type of view,
alongside form or tree views. They are actually stored in the same model, .

Creating Website Frontend Features

[218]

As usual, data files to be loaded must be declared in the manifest file, so edit the
 file to add the key:

And then add the actual data file, , with the following content:

The element is actually a shortcut for declaring a
for the model, using , and a template
inside it.

Now we need to have our controller method use this template:

Template rendering is provided by , through its function.

Notice that we added to the method arguments. With this if
any additional parameters provided by the HTTP request, such as query
string or parameters, can be captured by the dictionary. This
makes our method more robust, since providing unexpected parameters
will not cause it to error.

Extending web features
Extensibility is something we expect in all features of Odoo, and the web features are no
exception. And indeed we can extend existing controllers and templates. As an example, we
will extend our Hello World web page so that it takes a parameter with the name to greet:
using the URL would return a Hello John! greeting.

Creating Website Frontend Features

[219]

Extending is usually done from a different addon module, but it works as well inside the
same addon. To keep things concise and simple, we'll do it without creating a new addon
module.

Let's add a new file with the following code:

Here we can see what we need to do to extend a controller.

First we use a Python to get a reference to the controller class we want to extend.
Compared with models, they have a central registry, provided by the object, where a
reference to any model class can be obtained, without the need to know the module and file
implementing them. With controllers we don't have that, and need to know the module and
file implementing the controller we want to extend.

Next we need to (re)define the method from the controller being extended. It needs to be
decorated with at least the simple for its route to be kept active.
Optionally, we can provide parameters to , and then we will be replacing and
redefining its routes.

The extended method now has a parameter. The parameters can get their
values from segments of the route URL, from query string parameters, or from
parameters. In this case, the route has no extractable variable (we'll show that in a moment),
and since we are handling requests, not , the value for the name parameter will be
extracted from the URL query string. A test URL could be

.

Inside the method we run the inherited method to get its response, and then get to
modify it according to our needs. The common pattern for controller methods is for them to
end with a statement to render a template. In our case:

Creating Website Frontend Features

[220]

This generates a object, but the actual rendering is delayed until the end of
the dispatching.

This means that the inheriting method can still change the QWeb template and context to
use for the rendering. We could change the template modifying , but
we won't need that. We rather want to modify to add the key to
the rendering context.

Don't forget to add the new Python file to :

from . import extend

Now we need to modify the QWeb template, so that it makes use of this additional piece of
information. Add a :

inherit_id="todo_website.hello">
 <xpath expr="//h1" position="replace">
 <h1>
 Hello <t t-esc="name or 'Someone'" />!
 </h1>
 </xpath>

Web page templates are XML documents, just like the other Odoo view types, and we can
use to locate elements and then manipulate them, just like we could with the other
view types. The inherited template is identified in the element by the

 attribute.

We ought not forget to declare this additional data file in our addon manifest,
:

'views/todo_extend.xml'

After this, accessing should show us a
Hello John! message.

Creating Website Frontend Features

[221]

We can also provide parameters through URL segments. For example, we could get the
exact same result from the URL using this
alternative implementation:

@http.route(['/hello', '/hello/<name>])

As you can see, routes can contain placeholders corresponding to parameters to be
extracted, and then passed on to the method. Placeholders can also specify a converter to
implement a specific type mapping. For example, would extract the

 parameter as an integer value.

Converters are a feature provided by the library, used by Odoo, and most of the
ones available can be found in library's documentation, at

.

Odoo adds a specific and particularly helpful converter: extracting a model record. For
example extracts the user
parameter as a record object on for the model.

HelloCMS!
Let's make this even more interesting, and create our own simple CMS. For this we can
have the route expect a template name (a page) in the URL and then just render it. We could
then dynamically create web pages and have them served by our CMS.

It turns out that this is quite easy to do:

Now, open in your web
browser and you will see our Hello World web page!

Creating Website Frontend Features

[222]

In fact, the built-in website provides CMS features including a more robust implementation
of the above, at the endpoint route.

In werkzeug jargon the endpoint is an alias of the route, and represented
by its static part (without the placeholders). For our simple CMS example,
the endpoint was .

Most of the time we want our pages to be integrated into the Odoo website. So for the
remainder of this chapter our examples we will be working with the addon.

Building websites
The pages given by the previous examples are not integrated into the Odoo website: we
have no page footer, menu, and so on. The Odoo addon module conveniently
provides all these features so that we don't have to worry about them ourselves.

To use it, we should start by installing the addon module in our work instance,
and then add it as a dependency to our module. The key
should look like this:

'website'

To use the website, we also need to modify the controller and the template.

The controller needs an additional argument on the route:

website=True

And the template needs to be inserted inside the website general layout:

<t t-call="website.layout">

</t>

With this, the Hello World! example we used before should now be shown inside an Odoo
website page.

Creating Website Frontend Features

[223]

Adding CSS and JavaScript assets
Our website pages might need some additional CSS or JavaScript assets. This aspect of the
web pages is managed by the website, so we need a way to tell it to also use our files.

We will add some CSS to add a simple strikeout effect for the done tasks. For that, create the
 file with this content:

Next we need to have it included in the website pages. This is done by adding them in the
 template responsible for loading website-specific assets. Edit

the data file, to extend that template:

 inherit_id="website.assets_frontend">
 <xpath expr="." position="inside">
 <link rel="stylesheet" type="text/css"
 href="/todo_website/static/src/css/index.css"/>
 </xpath>

We will soon be using this new style class. Of course, JavaScript assets can
also be added using a similar approach.

The to-do list controller
Now that we went through the basics, let's work on our Todo Task list. We will have a

 URL showing us a web page with a list of Todo Tasks.

For that, we need a controller method, preparing the data to present, and a QWeb template
to present that list to the user.

Creating Website Frontend Features

[224]

Edit the file, to add this method:

The controller retrieves the data to be used and makes it available to the rendered template.
In this case the controller requires an authenticated session, since the route has the

 attribute. Even if that is the default value, it's a good practice to explicitly
state that a user session is required.

With this, the Todo Task statement will run with the current session user.

The data accessible to public users is very limited, when using that type of route, we often
need to use to elevate access and make the page data available that otherwise
would not be accessible.

This can also be a security risk, so be careful on the validation of the input parameters and
on the actions made. Also keep the recordset usage limited to the minimum
operations possible.

The method expects the identifier of the QWeb template to render, and
a dictionary with the context available for the template evaluation.

The to-do list template
The QWeb template should be added by a data file, and we can add it to the existing

 data file:

Creating Website Frontend Features

[225]

The preceding code uses the directive to render a list of tasks. The
directive used on the input checkbox allows us to add, or not, a attribute
depending on the value.

We have a checkbox input, and want it to be checked if the task is done. In HTML, a
checkbox is checked depending on it having or not a attribute. For this we use the

 directive to dynamically render the attribute depending on an
expression. In this case, the expression evaluates to , QWeb will omit the attribute,
which is convenient for this case.

When rendering the task name, the directive is used to dynamically create the URL
to open the detail form for each specific task. We used the special function to
generate a human-readable URL for each record. The link won't work for now, since we are
still to create the corresponding controller.

On each task we also use the directive to set the style only for the
tasks that are done.

Finally, we have an Add button to open a page with a form to create a new Todo Task. We
will use it to introduce web form handling next.

Creating Website Frontend Features

[226]

The To-do Task detail page
Each item in the Todo list is a link to a detail page. We should implement a controller for
those links, and a QWeb template for their presentation. At this point, this should be a
straightforward exercise.

In the file add the method:

Notice that the route is using a placeholder with the converter,
mapping to the task variable. It captures a Task identifier from the URL, either a simple ID
number or a slug representation, and converts it into the corresponding browse record
object.

And for the QWeb template add following code to the
 data file:

Noteworthy here is the usage of the element. It handles the proper
representation of the field value, just like in the backend. It correctly presents date values
and many-to-one values, for example.

Creating Website Frontend Features

[227]

Website forms
Forms are a common feature found on websites. We already have all the tools needed to
implement one: a QWeb template can provide the HTML for the form, the corresponding
submit action can be an URL, processed by a controller that can run all the validation logic,
and finally store the data in the proper model.

But for non-trivial forms this can be a demanding task. It's not that simple to perform all the
needed validations and provide feedback to the user about what is wrong.

Since this is a common need, a addon is available to aid us with this. Let's
see how to use it.

Looking back at the Add button in the Todo Task list, we can see that it opens the
 URL. This will present a form to submit a new Todo Task, and the fields

available will be the task name, a person (user) responsible for the task, and a file
attachment.

We should start by adding the dependency to our addon module. We can
replace , since keeping it explicitly would be redundant. On the

 edit the keyword to:

'website_form'

Now we will add the page with the form.

The form page
We can start by implementing the controller method to support the form rendering, in the

 file:

This is a simple controller, rendering the template, and providing it
with a list of users, so that it can be used to build a selection box.

Creating Website Frontend Features

[228]

Now for the corresponding QWeb template. We can add it into the
 data file:

 class="s_website_form

action="/website_form/"
 data-model_name="todo.task"
 data-success_page="/todo"

<!-- Form fields will go here! -->

class="o_website_form_send

As expected, we can find the Odoo-specific element,
responsible for inserting the template inside the website layout, and the

 that sets an additional title, expected by the website layout.

For the content, most of what we can see in this template can be found on a typical
Bootstrap CSS form. But we also have a few attributes and CSS classes that are specific to
the website forms. We marked them in bold in the code, so that it's easier for you to identify
them.

Creating Website Frontend Features

[229]

The CSS classes are needed for the JavaScript code to be able to correctly perform its form
handling logic. And then we have a few specific attributes on the element:

 is a standard form attribute, but must have the
value. The trailing slash is required.

 identifies the model to write to, and will be passed to the
 controller.

 is the URL to redirect to after a successful form
submission. In this case we will be sent back to the list.

We won't need to provide our own controller method to handle the form submission. The
 route will do that for us. It takes all information it needs from the form,

including the specific attributes just described, and then performs essential validations on
the input data, and creates a new record on the target model.

For advanced use cases, we can force a custom controller method to be used. For that we
should add a attribute to the element, with the keyword for
the target controller to use. For example, would
have the form submission to call the URL. We should then
provide a controller method attached to that route. However, doing this will be out of our
scope here.

We still need to finish our form, adding the fields to get inputs from the user. Inside the
 element add:

class="o_website_from_input

Creating Website Frontend Features

[230]

class="o_website_from_input

Here we are adding two fields, a regular text field for the description and a file field, to
upload an attachment. All the markup can be found in regular Bootstrap forms, except for
the class, needed for the website form logic to prepare the data to
submit.

The user selection list is not much different except that it needs to use a QWeb
directive to render the list of selectable users. We can do this because the controller retrieves
that recordset and makes it available to the template under the name :

class="o_website_from_input
 <t t-foreach="users" t-as="user">

 <option t-att-value="user.id">
 <t t-esc="user.name" />
 </option>
 </t>

However, our form still won't work until we do some access security setup.

Access security and menu item
Since this generic form handling is quite open, and relies on untrusted data sent by the
client, for security reasons it needs some server-side set up on what the client is allowed to
do. In particular, the model fields that can be written based on form data should be
whitelisted.

Creating Website Frontend Features

[231]

To add fields to this whitelist, a helper function is provided and we can use it from an XML
data file. We should create the file with:

For a model to be able to be used by forms, we must do two things: enable a flag on the
model, and whitelist the field that can be used. These are the two actions being done in the
preceding data file.

Don't forget that, for our addon module to know about this data file, it needs to be added to
the key of the manifest file.

It would also be nice for our Todo page to be available from the website menu. Let's add
that using this same data file. Add another element like this:

As you can see, to add a website menu item we just need to create a record in the
 model, with a name, URL, and the identifier of the parent menu item. The

top level of this menu has as parent; the item.

Creating Website Frontend Features

[232]

Adding custom logic
Website forms allow us to plug in our own validations and computations to the form
processing. This is done by implementing a method
with the logic on the target model. It accepts a dictionary, validates and makes
changes to it, and then returns the possibly modified dictionary.

We will use it to implement two features: remove any leading and trailing spaces from the
task title, and enforce that the task title must be at least three characters long.

Add the file containing the following code:

The method actually expects two parameters: the
object and the dictionary. Errors preventing form submission should raise a

 exception.

Most of the time this extension point for forms should allow us to avoid custom form
submission handlers.

As usual, we must make this new file Python imported, by adding
in the file, and adding the

 file with a line.

Creating Website Frontend Features

[233]

Summary
You should now have a good understanding about the essentials of the website features.
We have seen how to use web controllers and QWeb templates to render dynamic web
pages. We then learned how to use the website addon and create our own pages for it.
Finally, we introduced the website forms addon that helped us create a web form. These
should provide us the core skills needed to create website features.

Next, we will learn how to have external applications interact with our Odoo apps.

112
External API – Integrating with

Other Systems
The Odoo server also provides an external API, which is used by its web client and is also
available for other client applications.

In this chapter, we will learn how to use the Odoo external API from our own client
programs. Any programming language can be used, as long as it has support for XML-RPC
or JSON-RPC protocols. As an example, the official documentation provides code samples
for four popular programming languages: Python, PHP, Ruby, and Java.

To avoid introducing additional languages the reader might not be familiar with, here we
will focus on Python-based clients, although the techniques to handle the RPC calls also
apply to other programming languages.

We will describe how to use the Odoo RPC calls, and then use that to build a simple To Do
desktop app using Python.

Finally, we will introduce the ERPPeek client. It is a Odoo client library, that can be used as
a convenient abstraction layer for the Odoo RPC calls, and is also a command-line client for
Odoo, allowing to remotely manage Odoo instances.

Setting up a Python client
The Odoo API can be accessed externally using two different protocols: XML-RPC and
JSON-RPC. Any external program capable of implementing a client for one of these
protocols will be able to interact with an Odoo server. To avoid introducing additional
programming languages, we will keep using Python to explore the external API.

External API – Integrating with Other Systems

[235]

Until now, we have been running Python code only on the server. This time, we will use
Python on the client side, so it's possible you might need to do some additional set up on
your workstation.

To follow the examples in this chapter, you will need to be able to run Python files on your
work computer. The Odoo server requires Python 2, but our RPC client can be in any
language, so Python 3 will be just fine. However, since some readers may be running the
server on the same machine they are working on (hello Ubuntu users!), it will be simpler for
everyone to follow if we stick to Python 2.

If you are using Ubuntu or a Mac, Python is probably already installed. Open a terminal
console, type , and you should be greeted with something like the following:

Python 2.7.12 (default, Jul 1 2016, 15:12:24)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright",", "credits" or "license" for more information.
>>>

Windows users can find an installer for Python and also quickly get up to
speed. The official installation packages can be found at

.

If you are a Windows user and have Odoo installed in your machine, you might be
wondering why you don t already have a Python interpreter, and additional installation is
needed. The short answer is that the Odoo installation has an embedded Python interpreter
that is not easily used outside.

Calling the Odoo API using XML-RPC
The simplest method to access the server is using XML-RPC. We can use the
library from Python's standard library for this. Remember that we are programming a client
in order to connect to a server, so we need an Odoo server instance running to connect to. In
our examples, we will assume that an Odoo server instance is running on the same machine
(), but you can use any reachable IP address or server name, if the server is
running in a different machine.

External API – Integrating with Other Systems

[236]

Opening an XML-RPC connection
Let's have a first contact with the Odoo external API. Start a Python console and type in the
following:

>>> import xmlrpclib
>>> srv = 'http://localhost:8069'
>>> common = xmlrpclib.ServerProxy('%s/xmlrpc/2/common' % srv)
>>> common.version()
{'server_version_info': [10, 0, 0, 'final', 0, ''], 'server_serie': '10.0',
'server_version': '10.0', 'protocol_version': 1}

Here, we import the library and then set up a variable with the information for
the server address and listening port. Feel free to adapt these to your specific set up.

Next, we set up access to the server's public services (not requiring a login), exposed at the
 endpoint. One of the methods that is available is , which

inspects the server version. We use it to confirm that we can communicate with the server.

Another public method is . In fact, this does not create a session, as you
might be led to believe. This method just confirms that the username and password are
accepted and returns the user ID that should be used in requests instead of the username, as
shown here:

>>> db = 'todo'
>>> user, pwd = 'admin', 'admin'
>>> uid = common.authenticate(db, user, pwd, {})
>>> print uid

If the login credentials are not correct, a value is returned, instead of a user ID.

Reading data from the server
With XML-RPC, no session is maintained and the authentication credentials are sent with
every request. This adds some overhead to the protocol, but makes it simpler to use.

Next, we set up access to the server methods that need a login to be accessed. These are
exposed at the endpoint, as shown in the following:

>>> api = xmlrpclib.ServerProxy('%s/xmlrpc/2/object' % srv)
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'search_count'[[]])
40

External API – Integrating with Other Systems

[237]

Here, we are doing our first access to the server API, performing a count on the Partner
records. Methods are called using the method that takes the following
arguments:

The name of the database to connect to
The connection user ID
The user password
The target model identifier name
The method to call
A list of positional arguments
An optional dictionary with keyword arguments

The preceding example calls the method of the model with
one positional argument, , and no keyword arguments. The positional argument is a
search domain; since we are providing an empty list, it counts all the Partners.

Frequent actions are and . When called from the RPC, the method
returns a list of IDs matching a domain. The method is not available from the RPC,
and should be used in its place to give a list of record IDs and retrieve their data, as
shown in the following code:

>>> api.execute_kw(db, uid, pwd, 'res.partner', 'search', [[('country_id',
'=', 'be'), ('parent_id', '!=', False)]])
[18, 33, 23, 22]
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'read', [[18]],
{'fields': ['id', 'name', 'parent_id']})
[{'parent_id': [8, 'Agrolait'], 'id': 18, 'name': 'Edward Foster'}]

Note that for the method, we are using one positional argument for the list of IDs,
, and one keyword argument, . We can also notice that many-to-one relational

fields are retrieved as a pair, with the related record's ID and display name. That's
something to keep in mind when processing the data in your code.

The and combination is so frequent that a method is provided
to perform both operations in a single step. The same result as the previous two steps can be
obtained with the following:

>>> api.execute_kw(db, uid, pwd, 'res.partner', 'search_read',
[[('country_id', '=', 'be'), ('parent_id', '!=', False)]], {'fields':
['id', 'name', 'parent_id']})

External API – Integrating with Other Systems

[238]

The method behaves like , but expects a domain as a first positional
argument instead of a list of IDs. It's worth mentioning that the argument on
and is not mandatory. If not provided, all fields will be retrieved. This may
cause expensive computations of function fields and a large amount data to be retrieved ,
but probably never used, so it is generally recommended to provide an explicit list of fields.

Calling other methods
All other model methods are exposed through RPC, except for the ones prefixed with
an underscore, that are considered private. This means that we can use , , and

 to modify data on the server as follows:

>>> api.execute_kw(db, uid, pwd, 'res.partner', 'create', [{'name': 'Packt
Pub'}])
45
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'write', [[45], {'name':
'Packt Publishing'}])
True
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'read', [[45], ['id',
'name']])
[{'id': 45, 'name': 'Packt Publishing'}]
>>> api.execute_kw(db, uid, pwd, 'res.partner', 'unlink', [[45]])
True

One limitation of the XML-RPC protocol is that it does not support values. The
implication is that methods that don't return anything won't be usable through XML-RPC,
since they are implicitly returning . This is why methods should always finish with at
least a statement.

It is worth repeating that the Odoo external API can be used by most programming
languages. In the official documentation we can find practical examples for Ruby, PHP, and
Java. It is available at

.

External API – Integrating with Other Systems

[239]

Writing a Notes desktop application
Let's do something interesting with the RPC API. Odoo provides a simple app for notes.
What if users could manage their personal notes directly from their computer's desktop?
Let's write a simple Python application to do just that, as shown in the following screenshot:

For clarity, we will split it into two files: one dealing with interactions with the server
backend, , and another with the graphical user interface, .

Communication layer with Odoo
We will create a class to set up the connection and store its information. It should expose
two methods: to retrieve task data and to create or update tasks.

Select a directory to host the application files and create the file. We can start
by adding the class constructor, as follows:

External API – Integrating with Other Systems

[240]

Here we store all the information needed in the created object to execute calls on a model:
the API reference, , password, database name, and the model to use.

Next, we will define a helper method to execute the calls. It takes advantage of the object
stored data to provide a smaller function signature, as shown next:

Now we can use it to implement the higher level and methods.

The method will accept an optional list of IDs to retrieve. If none are listed, all
records will be returned:

The method will have the task text to write, and an optional ID as arguments. If ID is
not provided, a new record will be created. It returns the ID of the record written or created,
as shown here:

Let's end the file with a small piece of test code that will be executed if we run the Python
file:

External API – Integrating with Other Systems

[241]

If we run the Python script, we should see the content of our to-do tasks printed out. Now
that we have a simple wrapper around our Odoo backend, let's deal with the desktop user
interface.

Creating the GUI
Our goal here was to learn to write the interface between an external application and the
Odoo server, and this was done in the previous section. But it would be a shame not to go
the extra step and actually make it available to the end user.

To keep the setup as simple as possible, we will use Tkinter to implement the graphical user
interface. Since it is part of the standard library, it does not require any additional
installation. It is not our goal to explain how Tkinter works, so we will be short on an
explanation of it.

Each task should have a small yellow window on the desktop. These windows will have a
single text widget. Pressing Ctrl + N will open a new note, and pressing Ctrl + S will write
the content of the current note to the Odoo server.

Now, alongside the file, create a new file. It will first import
the Tkinter modules and widgets we will use, and then the class, as shown in the
following:

If the preceding code errors with
, that means additional libraries are needed on your

system. On Ubuntu you would need to run the following command:

$ sudo apt-get install python-tk

External API – Integrating with Other Systems

[242]

Next we create our own Text widget derived from the Tkinter one. When creating an
instance, it will expect an API reference, to use for the action, and also the task's text
and ID, as shown in the following:

The constructor creates a new UI window and the text widget places itself inside it, so
that creating a new instance automatically opens a desktop window.

Next, we will implement the and actions. The action opens a new
empty window, but it will be stored in the server only when a action performed. Here
is the corresponding code:

The action can be performed either on existing or on new tasks, but there is no need to
worry about that here since those cases are already handled by the method of

.

External API – Integrating with Other Systems

[243]

Finally, we will add the code that retrieves and creates all note windows when the program
is started, as shown in the following code:

The last command runs on the last note window created, to start waiting for
window events.

This is a very basic application, but the point here is to make an example of interesting ways
to leverage the Odoo RPC API.

Introducing the ERPpeek client
ERPpeek is a versatile tool that can be used both as an interactive Command-line Interface
(CLI) and as a Python library, with a more convenient API than the one provided by

. It is available from the PyPi index and can be installed with the following:

$ pip install -U erppeek

On a Unix system, if you are installing it system wide, you might need to prepend to
the command.

The ERPpeek API
The library provides a programming interface, wrapping around ,
which is similar to the programming interface we have for the server-side code.

Our point here is to provide a glimpse of what the library has to offer, and not to
provide a full explanation of all its features.

External API – Integrating with Other Systems

[244]

We can start by reproducing our first steps with using the as follows:

>>> import erppeek
>>> api = erppeek.Client('http://localhost:8069', 'todo','admin', 'admin')
>>> api.common.version()
>>> api.count('res.partner', [])
>>> api.search('res.partner', [('country_id', '=', 'be'),
('parent_id', '!=', False)])
>>> api.read('res.partner', [44], ['id', 'name', 'parent_id'])

As you can see, the API calls use fewer arguments and are similar to the server-side
counterparts.

But doesn't stops here, and also provides a representation for models. We have the
following two alternative ways to get an instance for a model, either using the

 method or accessing it as a camel case attribute name:

>>> m = api.model('res.partner')
>>> m = api.ResPartner

Now we can perform actions on that model as follows:

>>> m.count([('name', 'like', 'Packt%')])
1
>>> m.search([('name', 'like', 'Packt%')])
[44]

It also provides client-side object representation for records as follows:

>>> recs = m.browse([('name', 'like', 'Packt%')])
>>> recs
<RecordList 'res.partner,[44]'>
>>> recs.name
['Packt Publishing']

As you can see, library goes a long way from plain , and makes it
possible to write code that can be reused server side with little or no modification.

External API – Integrating with Other Systems

[245]

The ERPpeek CLI
Not only can library be used as a Python library, it is also a CLI that can be used to
perform administrative actions on the server. Where the command provided a
local interactive session on the host server, library provides a remote interactive
session on a client across the network.

Opening a command line, we can have a peek at the options available, as shown in the
following:

$ erppeek --help

Let's see a sample session as follows:

$ erppeek --server='http://localhost:8069' -d todo -u admin
Usage (some commands):

models(name) # List models matching pattern
model(name) # Return a Model instance

(...)
Password for 'admin':
Logged in as 'admin'
todo >>> model('res.users').count()
3
todo >>> rec = model('res.partner').browse(43)
todo >>> rec.name
'Packt Publishing'

As you can see, a connection was made to the server, and the execution context provided a
reference to the method to get model instances and perform actions on them.

The instance used for the connection is also available through the
variable.

Notably, it provides an alternative to the web client to manage the add-on modules
installed:

: lists modules available or installed
: performs module installation
: performs module upgrades

: uninstalls modules

So, can also provide good service as a remote administration tool for Odoo
servers.

External API – Integrating with Other Systems

[246]

Summary
Our goal for this chapter was to learn how the external API works and what it is capable of.
We started exploring it using a simple Python XML-RPC client, but the external API can be
used from any programming language. In fact, the official docs provide code examples for
Java, PHP, and Ruby.

There are a number of libraries to handle XML-RPC or JSON-RPC, some generic and some
specific for use with Odoo. We tried not to point out any libraries in particular, except for

, since it is not only a proven wrapper for the Odoo/OpenERP XML-RPC but
because it is also an invaluable tool for remote server management and inspection.

Until now, we used our Odoo server instances for development and tests. But to have a
production grade server, there are additional security and optimization configurations that
need to be done. In the next chapter, we will focus on them.

113
Deployment Checklist – Going

Live
In this chapter, you will learn how to prepare your Odoo server for use in a production
environment.

There are many possible strategies and tools that can be used to deploy and manage an
Odoo production server. We will guide you through one way of doing it.

This is the server set up checklist that we will follow:

Install dependencies and a dedicated user to run the server
Install Odoo from the source
Set up the Odoo configuration file
Set up multiprocessing workers
Set up the Odoo system service
Set up a reverse proxy with SSL support

Let's get started.

Available prebuilt packages
Odoo has a Debian/Ubuntu package available for installation. Using it, you get a working
server process that automatically starts on system boot. This installation process is
straightforward, and you can find all you need at . You can
also find the builds for CentOS and the installers there.

Deployment Checklist – Going Live

[248]

While this is an easy and convenient way to install Odoo, most integrators prefer to deploy
and run version-controlled source code. This provides better control over what is deployed
and makes it easier to manage changes and fixes once in production.

Installing dependencies
When using a Debian distribution, by default your login is with administrator
powers, and your command prompt shows . When using Ubuntu, logging with the
account is disabled, and the initial user configured during the installation process is a
sudoer, meaning that it is allowed to use the command to run commands with root
privileges.

First, we should update the package index, and then perform an upgrade to make sure all
installed programs are up to date:

$ sudo apt-get update
$ sudo apt-get upgrade -y

Next, we will install the PostgreSQL database, and make our user a database superuser:

$ sudo apt-get install postgresql -y
$ sudo su -c "createuser -s $(whoami)" postgres

We will be running Odoo from source, but before that we need to install the required
dependencies. These are the Debian packages required:

$ sudo apt-get install git python-pip python2.7-dev -y
$ sudo apt-get install libxml2-dev libxslt1-dev libevent-dev \
libsasl2-dev libldap2-dev libpq-dev libpng12-dev libjpeg-dev \
poppler-utils node-less node-clean-css -y

We should not forget to install , which is needed to print reports:

$ wget
http://nightly.odoo.com/extra/wkhtmltox-0.12.1.2_linux-jessie-amd64.deb
$ sudo dpkg -i wkhtmltox-0.12.1.2_linux-jessie-amd64.deb
$ sudo apt-get -fy install

The installation instructions will report a missing dependencies error, but the last command
forces the installation of those dependencies and correctly finishes the installation.

Deployment Checklist – Going Live

[249]

Now we are only missing the Python packages required by Odoo. Many of them also have
Debian/Ubuntu system packages. The official Debian installation package uses them, and
you can find the package names in the Odoo source code, in the file.

However, these Python dependencies can be also installed directly from the Python
Package Index (PyPI). This is friendlier for those who prefer to install Odoo
in . The required package list is in the Odoo's file, as is
usual for Python-based projects. We can install them with these commands:

$ sudo -H pip install --upgrade pip # Ensure pip latest version
$ wget https://raw.githubusercontent.com/odoo/odoo/10.0/requirements.txt
$ sudo -H pip install -r requirements.txt

Now that we have all dependencies installed, database server, system packages, and Python
packages, we can install Odoo.

Preparing a dedicated system user
A good security practice is to run Odoo using a dedicated user, with no special privileges
on the system.

We need to create the system and database users for that. We can name them ,
for example:

$ sudo adduser --disabled-password --gecos "Odoo" odoo
$ sudo su -c "createuser odoo" postgres
$ createdb --owner=odoo odoo-prod

Here, is the username and is the name of the database supporting our
Odoo instance.

Note that these are regular users without any administration privileges. A home directory is
automatically created for the new system user. In this example, it is , and the
user can refer to its own home directory with the shortcut symbol. We will use it for that
user's Odoo specific configurations and files.

We can open a session as this user using the following command:

$ sudo su odoo

The command terminates that session and returns to our original user.

Deployment Checklist – Going Live

[250]

Installing from the source code
Sooner or later, your server will need upgrades and patches. A version controlled
repository can be of great help when the time comes. We use to get our code from a
repository, just like we did to install the development environment.

Next, we will impersonate the user and download the code into its home directory:

$ sudo su odoo
$ git clone https://github.com/odoo/odoo.git /home/odoo/odoo-10.0 -b 10.0
--depth=1

The option makes sure that we get the right branch, and the option ignores
the change history and retrieves only the latest code revision, making the download much
smaller and faster.

Git will surely be an invaluable tool to manage the versions of your Odoo
deployments. We just scratched the surface of what can be done to
manage code versions. If you're not already familiar with Git, it's worth
learning more about it. A good starting point is .

By now we should have everything needed to run Odoo from source. We can check that it
starts correctly and then exit from the dedicated user's session:

$ /home/odoo/odoo-10.0/odoo-bin --help
$ exit

Next, we will set up some system-level files and directories to be used by the system
service.

Setting up the configuration file
Adding the option when starting an Odoo server saves the configuration used to
the file. We can use the file as a starting point for our server configuration,
which will be stored at , as shown in the following code:

$ sudo su -c "~/odoo-10.0/odoo-bin -d odoo-prod --save --stop-after-init"
odoo

This will have the configuration parameters to be used by our server instance.

Deployment Checklist – Going Live

[251]

The former config file is still supported, and used if
found. This can cause some confusion when setting up Odoo 10 in a
machine that was also used to run previous Odoo versions. On this case
the option might be updating the file
instead of .

Next, we need to place the config file in the expected location:

$ sudo mkdir /etc/odoo
$ sudo cp /home/odoo/.odoorc /etc/odoo/odoo.conf
$ sudo chown -R odoo /etc/odoo

We should also create the directory where the Odoo service will store its log files. This is
expected to be somewhere inside :

$ sudo mkdir /var/log/odoo
$ sudo chown odoo /var/log/odoo

Now we should make sure that a few important parameters are configured. Here are
suggested values for the most important ones:

Let's explain them:

 is a comma-separated list of the paths where add-on modules will
be looked up. It is read from left to right, with the leftmost directories having a
higher priority.

 is the master password to access the web client database
management functions. It's critical to set this with a strong password or, even
better, to set it to to deactivate the function.

 the database instance to initialize during the server startup sequence.

Deployment Checklist – Going Live

[252]

 is a filter for the databases to be made accessible. It is a Python-
interpreted regex expression. For the user to not be prompted to select a database,
and for unauthenticated URLs to work properly, it should be set with ,
for example, . It supports the and placeholders,
that are replaced by the HTTP request hostname and subdomain name.

 is where the server log should be written. For system services the
expected location is somewhere inside . If left empty, or set to ,
the log print to standard output instead.

 should be set to when Odoo is accessed behind a reverse
proxy, as we will do.

 should be set to in production environments so that new
databases do not have demo data on them.

 with a value of two or more enables multiprocessing mode. We will
discuss this in more detail in a moment.

 is the port number at which the server will listen. By default, port
 is used.

The following parameters can also be helpful:

 is the path where session data and attachment files are stored.
Remember to have backups on it

 sets the addresses that will be listened to. By default, it
listens to all , but when using a reverse proxy, it can be set to
in order to respond only to local requests

We can check the effect of the settings made by running the server with the or
option as follows:

$ sudo su -c "~/odoo-10.0/odoo-bin -c /etc/odoo/odoo.conf" odoo

Running Odoo with the above settings won't display any output to the console, since it is
being written to the log file defined in the configuration file. To follow what is going on
with the server we need to open another terminal window, and run there:

$ sudo tail -f /var/log/odoo/odoo-prod.log

If is also possible to use the configuration file and still force the log output to be printed to
the console, by adding the option, like this:

$ sudo su -c "~/odoo-10.0/odoo-bin -c /etc/odoo/odoo.conf --logfile=False"
odoo

Deployment Checklist – Going Live

[253]

Multiprocessing workers
A production instance is expected to handle a significant workload. By default, the server
runs one process and can use only one CPU core for processing, because of the Python
language GIL. However, a multiprocess mode is available so that concurrent requests can
be handled. The option sets the number of worker processes to use. As a
guideline, you can try setting it to , where is the number of processors. The best
setting to use needs to be tuned for each case, since it depends on the server load and what
other load intensive services are running on the server, such as PostgreSQL.

It is better to set workers too high for the load than too low. The minimum should be 6 due
to the parallel connections used by most browsers, and the maximum is generally be limited
by the amount of RAM on the machine.

There a few config parameters to tune the workers. Workers are recycled when
they reach these limits the corresponding process is stopped, a new one is started. This
protects the server from memory leaks and from particular processes overloading the server
resources.

The official documentation already provides good advice on the tuning of the worker
parameters, and you may refer to it for more details, at

.

Setting up as a system service
Next, we will want to set up Odoo as a system service and have it started automatically
when the system boots.

In Ubuntu/Debian, the system is responsible, to start services. Historically, Debian
(and derived operating systems) has used and Ubuntu has used a compatible
system called . Recently, this has changed, and the system used in the latest
version is now .

This means that there are two different ways to install a system service, and you need to
pick the correct one depending on the version of your operating system.

On the last Ubuntu stable version, 16.04, we should be using . But older versions
such as 14.04 are still used in many cloud providers, so there is a good chance that you
might need to use it.

Deployment Checklist – Going Live

[254]

To check if is used in your system try this command:

$ man init

This opens the documentation for the currently used system, and you will be able to
check what is being used.

Creating a systemd service
If the operating system you are using is recent, such as Debian 8 or Ubuntu 16.04, you
should be using for system.

To add a new service to the system, we just need to create a file describing it. Create a
 file with the following content:

Next, we need to register the new service:

$ sudo systemctl enable odoo.service

To start this new service use following command:

$ sudo systemctl odoo start

And to check its status run this:

$ sudo systemctl odoo status

Finally, if you want to stop it, use this command:

$ sudo systemctl odoo stop

Deployment Checklist – Going Live

[255]

Creating an Upstart/sysvinit service
If you are using an older operating system, such as Debian 7, Ubuntu 15.04, or even 14.04,
chances are that your system is on . For this purpose, both should
behave the same way. Many cloud VPS services are still based on Ubuntu 14.04 images, so
this might be a scenario you may encounter when deploying your Odoo server.

Many cloud VPS services are still based on Ubuntu 14.04 images, so this might be a scenario
you may encounter when deploying your Odoo server.

The Odoo source code includes an script used for the Debian packaged distribution.
We can use it as our service script with minor modifications, as follows:

$ sudo cp /home/odoo/odoo-10.0/debian/init /etc/init.d/odoo
$ sudo chmod +x /etc/init.d/odoo

At this point, you might want to check the content of the script. The key parameters
are assigned to variables at the top of the file. A sample is as follows:

These variables should be adequate and we will prepare the rest of the set up with their
default values in mind. But of course, you can change them to better suit your needs.

The variable is the system user under which the server will run. We have already
created the expected user.

The variable is the path to the server executable. Our actual executable to start
Odoo is in a different location, but we can create a symbolic link to it:

$ sudo ln -s /home/odoo/odoo-10.0/odoo-bin /usr/bin/odoo
$ sudo chown -h odoo /usr/bin/odoo

The variable is the configuration file to use. In a previous section, we created a
configuration file in the default expected location: .

Finally, the variable is the directory where log files should be stored. The expected
directory is that we created when we were defining the configuration file.

Deployment Checklist – Going Live

[256]

Now we should be able to start and stop our Odoo service as follows:

$ sudo /etc/init.d/odoo start
Starting odoo: ok

Stopping the service is done in a similar way, as shown in the following:

$ sudo /etc/init.d/odoo stop
Stopping odoo: ok

In Ubuntu, the command can also be used:

$ sudo service odoo start
$ sudo service odoo status
$ sudo service odoo config

We now only need to make this service start automatically on system boot:

$ sudo update-rc.d odoo defaults

After this, when we reboot our server, the Odoo service should be started automatically and
with no errors. It's a good time to check that all is working as expected.

Checking the Odoo service from the command
line
At this point, we could confirm if our Odoo instance is up and responding to requests.

If Odoo is running properly, we should now be able to get a response from it and see no
errors in the log file. We can check inside the server if Odoo is responding to HTTP requests
using the following command:

$ curl http://localhost:8069
<html><head><script>window.location = '/web' +
location.hash;</script></head></html>

And to see what is in the log file we can use the following:

$ sudo less /var/log/odoo/odoo-server.log In case you are just starting with Linux, you will
like to know that you can follow what is going on in the log file using tail -f:

$ sudo tail -f /var/log/odoo/odoo-server.log

Deployment Checklist – Going Live

[257]

Using a reverse proxy
While Odoo itself can serve web pages, it is strongly recommended to have a reverse proxy
in front of it. A reverse proxy acts as an intermediary managing the traffic between the
clients sending requests and the Odoo servers responding to them. Using a reverse proxy
has several benefits.

On the security side, it can do the following:

Handle (and enforce) HTTPS protocols to encrypt traffic
Hide the internal network characteristics
Act as an application firewall limiting the URLs accepted for processing

And on the performance side, it can provide significant improvements:

Cache static content, thus reducing the load on the Odoo servers
Compress content to speed up loading times
Act as a load balancer, distributing load between several servers

Apache is a popular option to use as a reverse proxy. Nginx is a recent alternative with
good technical arguments. Here, we will choose to use Nginx as a reverse proxy and show
how it can be used to perform the security and performance side functions mentioned here.

Setting up Nginx for reverse proxy
First, we should install Nginx. We want it to listen on the default HTTP ports, so we should
make sure they are not already taken by some other service. Performing this command
should result in an error, as follows:

$ curl http://localhost
curl: (7) Failed to connect to localhost port 80: Connection refused

If not, you should disable or remove that service to allow Nginx to use those ports. For
example, to stop an existing Apache server you should use this command:

$ sudo service apache2 stop

Or better yet, you should consider removing it from your system, or reconfigure it to listen
on another port, so the HTTP and HTTPS ports (and) are free to be used by Nginx.

Now we can install Nginx, which is done in the expected way:

$ sudo apt-get install nginx

Deployment Checklist – Going Live

[258]

To confirm that it is working correctly, we should see a Welcome to nginx page when
visiting the server address with a browser or using inside our
server.

Nginx configuration files follow the same approach as Apache: they are stored in
 and activated by adding a symbolic link in

. We should also disable the default configuration provided
by the Nginx installation, as follows:

$ sudo rm /etc/nginx/sites-enabled/default
$ sudo touch /etc/nginx/sites-available/odoo
$ sudo ln -s /etc/nginx/sites-available/odoo /etc/nginx/sites-enabled/odoo

Using an editor, such as or we should edit our Nginx configuration file as follows:

$ sudo nano /etc/nginx/sites-available/odoo

First, we add the upstreams, and the backend servers Nginx will redirect traffic to the Odoo
server in our case, which is listening on port , as follows:

To test if the edited configuration is correct, use the following command:

$ sudo nginx -t

If you find errors, confirm the configuration file is correctly typed. Also, a common problem
is for the default HTTP to be taken by another service, such as Apache or the default Nginx
website. Double-check the instructions given before to make sure that this is not the case,
then restart Nginx. After this, we can have Nginx to reload the new configuration as
follows:

$ sudo /etc/init.d/nginx reload

We can now confirm that Nginx is redirecting traffic to the backend Odoo server:

$ curl http://localhost
<html><head><script>window.location = '/web' +
location.hash;</script></head></html>

Deployment Checklist – Going Live

[259]

Enforcing HTTPS
Next, we should install a certificate to be able to use SSL. To create a self-signed certificate,
follow the following steps:

$ sudo mkdir /etc/nginx/ssl && cd /etc/nginx/ssl
$ sudo openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -
days 365 -nodes
$ sudo chmod a-wx * # make files read only
$ sudo chown www-data:root * # access only to www-data group

This creates an directory inside the directory and creates a
passwordless self-signed SSL certificate. When running the command, some
additional information will be asked, and a certificate and key files are generated. Finally,
the ownership of these files is given to the user used to run the web server.

Using a self-signed certificate can pose some security risks, such as man-
in-the-middle attacks, and may even not be allowed by some browsers.
For a robust solution, you should use a certificate signed by a recognized
certificate authority. This is particularly important if you are running a
commercial or e-commerce website.

Now that we have an SSL certificate, we are ready to configure Nginx to use it.

To enforce HTTPS, we will redirect all HTTP traffic to it. Replace the directive we
defined previously with the following:

If we reload the Nginx configuration now and access the server with a web browser, we will
see that the address will be converted into an address.

But it won't return any content before we configure the HTTPS service properly, by adding
the following server configuration:

Deployment Checklist – Going Live

[260]

This will listen to the HTTPS port and use the certificate files to encrypt
the traffic. We also add some information to the request header to let the Odoo backend
service know it's being proxied.

For security reasons, it's important for Odoo to make sure the parameter is set
to . The reason for this is that, when Nginx acts as a proxy, all request will appear to
come from the server itself instead of the remote IP address. Setting the
header in the proxy and enabling solves that. But enabling
without forcing this header at the proxy level would allow anyone to spoof their remote
address.

At the end, the directive defines that all request are passed to the
upstream.

Reload the configuration, and we should have our Odoo service working through HTTPS,
as shown in the following commands:

$ sudo nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful
$ sudo service nginx reload
* Reloading nginx configuration nginx
...done.
$ curl -k https://localhost
<html><head><script>window.location = '/web' +
location.hash;</script></head></html>

The last output confirms that the Odoo web client is being served over HTTPS.

Deployment Checklist – Going Live

[261]

For the particular case where an Odoo POSBox is being used, we need to
add an exception for the URL to be able to access it in HTTP mode.
The POSBox is located in the local network but does not have SSL enabled.
If the POS interface is loaded in HTTPS it won t be able to contact the
POSBox at all.

Nginx optimizations
Now, it is time for some fine-tuning of the Nginx settings. They are recommended to enable
response buffering and data compression that should improve the speed of the website. We
also set a specific location for the logs.

The following configurations should be added inside the server listening on port , for
example, just after the proxy definitions:

We can also activate static content caching for faster responses to the types of requests
mentioned in the preceding code example and to avoid their load on the Odoo server. After
the section, add the following second location section:

Deployment Checklist – Going Live

[262]

With this, the static data is cached for 60 minutes. Further requests on those requests in that
interval will be responded to directly by Nginx from the cache.

Long polling
Long polling is used to support the instant messaging app, and when using multiprocessing
workers, it is handled on a separate port, which is by default.

For our reverse proxy, this means that the long polling requests should be passed to this
port. To support this, we need to add a new upstream to our Nginx configuration, as shown
in the following code:

Next, we should add another location to the server handling the HTTPS requests, as shown
in the following code:

With these settings, Nginx should pass these requests to the proper Odoo server port.

Server and module updates
Once the Odoo server is ready and running, there will come a time when you need to install
updates on Odoo. This involves two steps: first, to get the new versions of the source code
(server or modules), and second, to install them.

If you have followed the approach described in the Installing from the source code section, we
can fetch and test the new versions in the staging repository. It is strongly advised that you
make a copy of the production database and test the upgrade on it. If is your
production database, this could be done with the following commands:

$ dropdb odoo-stage; createdb odoo-stage
$ pg_dump odoo-prod | psql -d odoo-stage
$ sudo su odoo
$ cd ~/.local/share/Odoo/filestore/
$ cp -al odoo-prod odoo-stage
$ ~/odoo-10.0/odoo-bin -d odoo-stage --xmlrpc-port=8080 -c
/etc/odoo/odoo.conf
$ exit

Deployment Checklist – Going Live

[263]

If everything goes OK, it should be safe to perform the upgrade on the production service.
Remember to make a note of the current version Git reference in order to be able to roll back
by checking out this version again. Keeping a backup of the database before performing the
upgrade is also highly advised.

The database copy can be made in much faster way, using the following
 command:

The caveat here is that for it to run there can't be any open connections to
the odoo-prod database, so the Odoo server needs to be stopped to
perform the copy.

After this, we can pull the new versions to the production repository using Git and
complete the upgrade, as shown here:

$ sudo su odoo
$ cd ~/odoo-10.0
$ git pull
$ exit
$ sudo service odoo restart

Regarding the Odoo release policy, no minor versions are released anymore. GitHub
branches are expected to represent the latest stable version. The nightly builds are
considered the latest official stable release.

On the update frequency, there is no point in updating too frequently, but also not to wait
one year between updates. Performing an update every few months should be fine. And
usually a server restart will be enough to enable to code updates, and module upgrades
shouldn't be necessary.

Of course, if you need a specific bug fix, an earlier update should probably be made. Also
remember to watch out for security bugs disclosures on the public channels GitHub Issues
or the Community mailing list. As part of the service, enterprise contract customers can
expect early email notifications of this type of issues.

Deployment Checklist – Going Live

[264]

Summary
In this chapter, you learned about the additional steps to set up and run Odoo in a Debian-
based production server. The most important settings in the configuration file were visited,
and you learned how to take advantage of the multiprocessing mode.

For improved security and scalability, you also learned how to use Nginx as a reverse proxy
in front of our Odoo server processes.

This should cover the essentials of what is needed to run an Odoo server and provide a
stable and secure service to your users.

To learn more about Odoo you should also look at the official documentation, at
. Some topics are covered in more detail there, and you will

also find topics not covered in this book.

There are also other published books on Odoo you might also find useful. Pack Publishing
has a few in its catalog, and in particular the Odoo Development Cookbook provides more
advanced material, covering more topics not discussed here.

And finally, Odoo is an open source product with a vibrant community. Getting involved,
asking questions and contributing is a great way not only to learn but also to build a
business network. On this we can't help mentioning the Odoo Community Association
(OCA), promoting collaboration and quality open source code. You can learn more about it
at .

Index

_
_description model attribute
_name model attribute
_order model attribute
_rec_name model attribute
_table model attribute

A
abstract model
abstract models
access control security
 adding ,
Access Controls List (ACL)
access security
 access control list, adding ,
 row-level access rules ,
 setting up
 testing
AccessError exception
action buttons
 adding ,
 attributes
action records
 modifying
add-ons path
 configuring
addons path
Affero General Public License (AGPL)
API decorators method ,
api.multi decorator
application features
 organizing, into modules ,
Applications
Apps
 apps list
 update list

automated tests
 adding ,

B
Bootstrap class
 reference link
Bootstrap
 reference link
business document form views
business document views
 about ,
 content, grouping in form ,
 header ,
 sheet canvas
 smart buttons area
 tabbed notebooks
business logic
 about
 adding ,
 tests, adding
business reports
 creating
buttons
 about
 attributes

C
calendar views
class inheritance
Command Line Interface (CLI)
command line
 Odoo service. checking from
common field attributes
computed fields ,
computed storing, fields
conditional rendering
 t-if directive, used

[266]

configuration file
 setting up
configuration
 configuration file
 debug
 log file
 log level
Content Management System (CMS)
 about , ,
 features
context
 about
 data ,
controllers, extending
controllers, route placeholders
controllers, web
CSS assets
 adding
CSS
 adding, as JavaScript assets
custom CSS

D
data attribute, manifest
Data Manipulation Language (DML)
data model
 creating , ,
data noupdate attribute ,
data records
 defining, in XML
 deleting
 field values, setting
 field values, setting for relation field ,
 field values, setting Python expression used
data
 action records, modifying
 CSV data files, related records in , ,
 exporting , ,
 importing ,
 menu, modifying
 modifying
 presenting, in reports
 reading, from server , ,
 security record rules, modifying ,
database filter option ,

database transaction ,
dates, working with
Debian-based host
 planning
Debian/Ubuntu package
 URL, for installation
debugging
 ipdb command
 log messages
 pdb command ,
 print statement
 pudb command
delegation inheritance
 about
 used, for embedding models ,
demonstration data ,
dependencies
 configuration file, setting up
 installing ,
 source code, installing from
 system user, preparing
depends, module
description, module
developer tools
 activating ,
development mode, server
development tools
 debugging
diagram views
domain filters
domain
 about ,
 expressions , ,
 field name
 operator
 value
dynamic attributes
 t-att directive, used
dynamic relationships
 reference fields, used ,
dynamic views
 about
 dynamic attributes
 on change events

[267]

E
ERPpeek
 API ,
 client
 Command Line Interface (CLI)
exceptions, raising
exceptions
 testing
execution environment
 modifying
external identifier
 about ,
 finding ,

F
field elements
 attributes
field values
 setting, for relation field ,
 setting, Python expression used
field widgets
fields
 about
 adding ,
 attributes , , ,
 creating
 labels
 modifying ,
 names ,
 relational fields
 standard positional arguments
 types ,
 widgets
filter elements
 attributes
form view
 creating
 extending
form views
 about
 business document views ,
 dealing with
form
 organizing, group used

functions
 triggering

G
gantt view
GNU licenses
 reference link
graph views
 attributes
group form content
GUI
 creating , ,

H
Hello World web page
 about
 Content Management System (CMS) ,
 controller object, adding ,
 features, extending , , ,
 planning ,
 with Qweb template ,
hierarchic relationships ,
HTTPS
 enforcing ,

I
images
 rendering ,
in-place extension
inheritance mechanism
inheritance
 on kanban views
install
 dependencies
 less (CSS preprocessor)
 source code install
ipdb command

J
JavaScript assets
Javascript assets, adding

[268]

K
kanban
 about
 board , ,
 card elements ,
 card layout
 card option menu, adding ,
 color
 kanban_state
 priority
 views ,
 views, actions in
 views, designing
 views, inheritance on
keyword arguments
 reference link

L
language translation
 enabling, in reports
LAPP image
 reference link
Lesser General Public License (LGLP)
licenses
Linux text editor
 using
list view (or tree)
list views
list
 adding
listening port
 changing
logging
long polling
loops
 t-foreach directive, used
low-level SQL ,

M
mail module
manifest file
manifest, module
many-to-many relationships ,
many-to-one relationships

 named arguments
menu items
 adding , ,
menu
 modifying
methods
 calling
mixin classes
model layer
 about
 automated tests, adding ,
 data model, creating , ,
model methods, extending
model, _inherit attribute
model, _inherits attribute
model, registry
models
 abstract models
 attributes ,
 creating ,
 dynamic relationships, reference fields used ,

 extending
 fields, adding
 fields, modifying
 hierarchic relationships ,
 inspecting
 many-to-many relationships ,
 many-to-one relationships
 one-to-many inverse relationships ,
 Python classes ,
 relationship, defining ,
 transient models
module add-ons
module data
 about
 demonstration data
module updates ,
module
 installing
modules
 application features, organizing ,
 todo_ui module ,
multiprocessing workers
 Odoo service, checking from command line

[269]

 system service, setting up as
 systemd service, creating
 sysvinit service, creating ,
 upstart service, creating ,

N
Nginx
 optimizations
 setting, up for reverse proxy ,
notebook form element
notes desktop application
 GUI, creating , ,
 Odoo, communication layer with , ,
 writing
noupdate, data

O
Object Relational Model (ORM)
Odoo Community Association (OCA)
Odoo database
 initializing ,
 managing ,
Odoo external API
 reference link
Odoo model
 embedding, delegation inheritance used ,
 extending
 features, copying prototype inheritance used
 fields, adding
 fields, modifying
 inheritance mechanisms
 methods, modifying , ,
 social network features, adding ,
Odoo module
 description
Odoo product versions ,
Odoo server
 configuration file
 configuration files
 configuration options
 database filter option ,
 Debian-based host, planning
 host, setting up ,
 listening port, changing
 log messages, managing

 user account, creating
Odoo
 add-ons path, adding
 API, calling XML-RPC used
 applications
 communication layer with , ,
 concepts
 CSS, adding as JavaScript assets
 data, reading from server , ,
 licenses
 methods, calling
 module basic skeleton, creating
 module, creating ,
 module, installing ,
 module, upgrading ,
 modules
 modules, extending ,
 modules, modifying ,
 packages, installing from source , ,
 server development mode ,
 service, checking from command line
 to-do list contoller ,
 to-do list template
 to-do task detail page
 website forms
 website, building
 XML-RPC, connection opening
on change events
on change mechanism
one-to-many inverse relationships ,
ORM API, return action
ORM API, search method
ORM API, warning
ORM API, write method
ORM API
 database transaction ,
 decorators method ,
 default methods, overriding ,
 default_get
 execution environment, modifying
 export_data
 fields_get
 fields_view_get
 load
 low-level SQL ,

[270]

 name_create
 name_get
 name_search
 read
 RPC, methods ,
 search_read
 server environment ,
 shell command ,
 web client, methods ,
 working
other actions, XML data files
 data records, deleting
 functions, triggering
 workflows, triggering

P
paper formats ,
pdb command ,
pivot views ,
 attributes
PostgreSQL
 create database
 reference link
 superuser
 template database
prebuilt packages ,
prototype inheritance
 used, for copying features
pudb command
Python 3
Python client
 setting up
Python debugger commands
 reference link
Python library
Python Package Index (PyPI)
Python
 reference link

Q
QWeb templaes, extending
QWeb
 about
 JavaScript evaluation context ,
 report templates ,

 t-att directive, used for dynamic attributes
 t-attf directive, used
 t-attf directive, used for string substitution

attributes
 t-call directive, used for inserting templates
 t-esc directive, used for rendering values
 t-foreach directive, used for loops
 t-if directive, used for conditional rendering
 t-raw directive, used for rendering values
 t-set directive, used for setting values on

variables
 templating language

R
Record Rules
recordsets
 dates, working
 manipulating
 models, querying ,
 operations on
 records, writing on ,
 relational fields, used ,
 relational fields, working
 singleton
 time, working
 working
reference fields
related fields
relational fields
 using ,
 working
relationships
 many-to-many relationships
reports
 data, presenting in
 language translation, enabling in
 on custom SQL ,
 templates
reserved fields, model
reverse proxy
 HTTPS, enforcing ,
 long polling
 Nginx, optimizations
 Nginx, setting up ,
 using

[271]

row-level access rules ,
RPC calls, execute_kw
run tests
running totals ,

S
Samba
 configuring , ,
 installing , ,
scaffold command
search method
search method, ORM API
search views
 adding
 extending
Secure Shell (SSH)
security record rules
 modifying ,
semantic components
 buttons
 fields
 smart buttons ,
 viewing
semantic versioning
 URL
server environment ,
server log messages
 managing
server updates ,
sharing capabilities
 adding, to To-Do application , ,
sheet canvas, business document views
 subtitle ,
 title ,
shell command ,
shell feature
 URL, for downloading
shortcuts
 for frequently used models ,
singleton recordset
singletons
smart buttons
 about ,
 attributes
social network features

 adding ,
source code
 installing, from
stage many-to-one field
state selection field
statusbar widget
string substitution attributes
 t-attf directive, used
sudo method , API environment
summary totals ,
super()
system service
 setting up
system user
 preparing
systemd service
 creating
sysvinit service
 creating ,

T
t-att directive
 used, for dynamic attributes
t-attf directive
 used, for string substitution attributes
 using
t-call directive
 used, for inserting templates
t-esc directive
 used, for rendering values
t-foreach directive
 used, for loops
t-if directive
 used, for conditional rendering
t-raw directive
 used, for rendering values
t-set directive
 used, for setting values on variables
templates
 inserting, t-call directive used
test cases
 writing
tests
 about
 adding

[272]

third-party modules
 add-ons path, configuring
 apps list, updating
 installing
 Odoo Community Association (OCA), finding ,

To-Do application
 reference link
 sharing capabilities, adding to , ,
to-do list controller ,
to-do list template
to-do task detail page
todo_ui module ,
transient models
tree element
 attributes
tree view (or list)
tree views
 extending

U
Ubuntu
unit tests
 adding ,
 executing
 setting up
unittest testcases
 reference link
update command
upgrade module
upstart service
 creating ,
user interface
 defining, with XML files
 menu items
 Window actions
 window actions
UserError exception

V
ValidationError exception
values
 rendering, t-esc directive used
 rendering, t-raw directive used
view layer

 about
 action buttons, adding ,
 business document form views
 form view
 form view, creating
 group, used to organize form
 list, adding
 menu items, adding , ,
 search views, adding
view types
 about
 diagram views
 gantt view
 kanban view
 reference
views
 extending , ,
 form view, extending
 search views, extending
 tree views, extending
virtual machine
 networking
virtualization
 about
 Microsoft Hyper-V
 Oracle VirtualBox
 VMWare Fusion
 VMWare Workstation
VMWare Workstation Player
 reference link

W
Webkit HTML to PDF (wkhtmltopdf)
 installing ,
 URL, for downloading
website forms
 about
 access security
 custom logic, adding
 form page , ,
 menu items
website module
werkzeug library
 reference link
Window actions

 about
 attributes
Windows workstation
 developing ,
 Linux text editor, used
 Samba, configuring , ,
 Samba, installing , ,
with_context method, API environment
wizard, footer
wizard
 business logic
 creating ,
 exception, raising
 form
 helper actions ,
 logging ,
 model
wkhtmltopdf
 installing
workers
 multiprocessing
workflows

 triggering
write method
write method, ORM API

X
XML data files
 about
 data noupdate attribute ,
 data records, defining
 other actions
 shortcuts, for frequently used models ,
XML ID
XML-RPC
 connection, opening
 used, for calling Odoo API
XPATH expressions
XPath
 reference link

Y
YAML tests ,
 reference link

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Odoo Development
	Setting up a host for the Odoo server
	Provision for a Debian host
	Creating a user account for Odoo

	Installing Odoo from the source
	Initializing a new Odoo database
	Managing your databases

	A word about Odoo product versions
	More server configuration options
	Odoo server configuration files
	Changing the listening port
	The database filter option
	Managing server log messages

	Developing from your workstation
	Using a Linux text editor
	Installing and configuring Samba
	Activating the developer tools

	Installing third-party modules
	Finding community modules
	Configuring the addons path
	Updating the apps list

	Summary

	Chapter 2: Building Your First Odoo Application
	Essential concepts
	Understanding applications and modules
	Modifying and extending modules
	Creating the module basic skeleton
	A word about licenses
	Adding to the addons path
	Installing the new module
	Upgrading a module
	The server development mode

	The model layer
	Creating the data model
	Adding automated tests

	The view layer
	Adding menu items
	Creating the form view
	Business document form views
	Adding action buttons
	Using groups to organize forms
	The complete form view
	Adding list and search views

	The business logic layer
	Adding business logic
	Adding tests

	Setting up access security
	Testing access security
	Adding access control security
	Row-level access rules

	Better describing the module
	Summary

	Chapter 3: Inheritance – Extending Existing Applications
	Adding sharing capabilities to the To-Do app
	Extending models
	Adding fields to a model
	Modifying existing fields
	Modifying model methods

	Extending views
	Extending the form view
	Extending the tree and search views

	More model inheritance mechanisms
	Copying features with prototype inheritance
	Embedding models using delegation inheritance
	Adding the social network features

	Modifying data
	Modifying menu and action records
	Modifying security record rules

	Summary

	Chapter 4: Module Data
	Understanding external identifiers
	Finding external identifiers

	Exporting and importing data
	Exporting data
	Importing data
	Related records in CSV data files

	Module data
	Demonstration data

	XML data files
	The data noupdate attribute
	Defining records in XML
	Setting field values
	Setting values using expressions
	Setting values for relation fields

	Shortcuts for frequently used models
	Other actions in XML data files
	Deleting records
	Triggering functions and workflows

	Summary

	Chapter 5: Models – Structuring the Application Data
	Organizing application features into modules
	Introducing the todo_ui module

	Creating models
	Model attributes
	Models and Python classes
	Transient and Abstract models
	Inspecting existing models

	Creating fields
	Basic field types
	Common field attributes
	Special field names

	Relationships between models
	Many-to-one relationships
	Many-to-many relationships
	One-to-many inverse relationships
	Hierarchic relationships
	Reference fields using dynamic relationships

	Computed fields
	Searching and writing on computed fields
	Storing computed fields
	Related fields

	Model Constraints
	Summary

	Chapter 6: Views - Designing the User Interface
	Defining the user interface with XML files
	Menu items
	Window actions

	Context and domain
	Context data
	Domain expressions

	The form views
	Dealing with several views of the same type
	Business document views
	The header
	The sheet
	Title and subtitle
	Smart buttons area
	Grouping content in a form
	Tabbed notebooks

	View semantic components
	Fields
	Labels for fields
	Relational fields
	Field widgets

	Buttons
	Smart buttons

	Dynamic views
	On change events
	Dynamic attributes

	List views
	Search views
	Calendar views
	Graph and pivot views
	Other view types
	Summary

	Chapter 7: ORM Application Logic – Supporting Business Processes
	Creating a wizard
	The wizard model
	The wizard form
	The wizard business logic
	Logging
	Raising exceptions
	Helper actions in wizards

	Working with the ORM API
	Method decorators
	Overriding the ORM default methods
	Methods for RPC and web client calls
	The shell command
	The server environment
	Modifying the execution environment
	Transactions and low-level SQL

	Working with recordsets
	Querying models
	Singletons
	Writing on records
	Working with time and dates
	Operations on recordsets
	Manipulating recordsets
	Using relational fields
	Working with relational fields

	Summary

	Chapter 8: Writing Tests and Debugging Your Code
	Unit tests
	Adding unit tests
	Writing test cases
	Setting up tests
	Testing exceptions
	Running tests
	About YAML tests
	Development tools
	Server development options
	Debugging
	The Python debugger
	A sample debugging session
	Alternative Python debuggers
	 Printing messages and logging

	Inspecting running processes

	Summary

	Chapter 9: QWeb and Kanban Views
	About kanban boards
	Kanban views

	Designing kanban views
	Priority, kanban state, and color
	Kanban card elements
	The kanban card layout
	Adding a kanban card option menu
	Actions in kanban views

	The QWeb templating language
	The QWeb JavaScript evaluation context
	Using t-attf for attributes string substitution
	Using t-att for dynamic attributes
	Using t-foreach for loops
	Using t-if for conditional rendering
	Using t-esc and t-raw to render values
	Using t-set to set values on variables
	Using t-call to insert other templates
	More ways to use t-attf

	Inheritance on kanban views
	Custom CSS and JavaScript assets
	Summary

	Chapter 10: Creating QWeb Reports
	Installing wkhtmltopdf
	Creating business reports
	QWeb report templates
	Presenting data in reports
	Rendering images
	Summary totals and running totals
	Defining paper formats
	Enabling language translation in reports
	Reports based on custom SQL
	Summary

	Chapter 11: Creating Website Frontend Features
	Roadmap
	Our first web page
	Hello World!
	Hello World! with a Qweb template
	Extending web features
	HelloCMS!

	Building websites
	Adding CSS and JavaScript assets
	The to-do list controller
	The to-do list template
	The To-do Task detail page

	Website forms
	The form page
	Access security and menu item
	Adding custom logic

	Summary

	Chapter 12: External API – Integrating with Other Systems
	Setting up a Python client
	Calling the Odoo API using XML-RPC
	Opening an XML-RPC connection
	Reading data from the server
	Calling other methods

	Writing a Notes desktop application
	Communication layer with Odoo
	Creating the GUI

	Introducing the ERPpeek client
	The ERPpeek API
	The ERPpeek CLI

	Summary

	Chapter 13: Deployment Checklist – Going Live
	Available prebuilt packages
	Installing dependencies
	Preparing a dedicated system user
	Installing from the source code
	Setting up the configuration file

	Multiprocessing workers
	Setting up as a system service
	Creating a systemd service
	Creating an Upstart/sysvinit service
	Checking the Odoo service from the command line

	Using a reverse proxy
	Setting up Nginx for reverse proxy
	Enforcing HTTPS
	Nginx optimizations
	Long polling

	Server and module updates
	Summary

	Index

